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Class Times and Location: Monday & Wednesday 8-10 AM (Boelter 9436)

Instructor: Prof. F. Grillot

email: fgrillot@seas.ucla.edu
Office Hours: Tuesday & Thursday 10-11 AM (66-144 Engr. IV.)

Course Website: https://eeweb.ee.ucla.edu

Please make sure your email is entered on the eeweb website in order to
receive course email

Midterm: Tuesday November 22, [open book], Wednesday, November 22,
2017, 11AM-12:50PM

Final: Oral presentation based on a research paper, (December)

Syllabus
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Grading policy: HW (19%),

Midterm (40%) + Finale Presentation (40%),

Survey (1%)

There will be 4 HWs assigned, typically due every 2-3 weeks in class.
Instructor reserves the right to use his judgment rather than strict
formulae when determining final grades.

Main Topics (tentative)
Postulates, Schrödinger equation, Fourier transform, Ehrenfest’s
theorem, Hilbert Space, Observable, Commutation, Infinite well, Bound
and Scattering States, Finite Well, Asymmetric double well potential,
Tunneling effect, Chemical bond, Stability of Matter, Wave-packet,
Quantum harmonic oscillator, Photon polarization, Stern and Gerlach
experiment,…

Syllabus 
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The exact choice and order of coverage may be adjusted or enhanced
during the course

The course will also give various applications of quantum mechanics in
our daily life
Telecommunications (Laser), Microelectronics (Nanotransistor)
Medicine (Nuclear Magnetic Resonance)
Microscopy (STM)
Quantum cryptography
Astrophysics (oscillation of nucleons)
Spintronics (Magnetic Hard Drives, RAMs)

Syllabus 
Main Topics (continued)
Angular momentum and spin, Bell’s theorem, Entanglement,
Perturbation theory, Central force problem, Hydrogen atom, Fermi
golden rule, Field quantization, Fermions & bosons, indiscernibility,
Krönig-Penney’s model, Nonlinear chaotic dynamics in quantum
systems.
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I do not plan to follow a specific textbook. The lectures will present
complementary viewpoints and topics. However the following
references can be considered to grab more information.

[1] D. J. Griffiths, Introduction to Quantum Mechanics,

[2] R. Liboff, Introductory Quantum Mechanics

[3] P. L. Hagelstein, S. D. Senturia, and T. P. Orlando, Introductory
Applied Quantum & Statistical Mechanics

[4] R. P. Feynman, The Feynman Lectures on Physics, Volume III:
Quantum Mechanics

[5] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics

[6] J. J. Sakurai, Modern Quantum Mechanics

3/12/22

Resources
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Motivations

Why do we teach quantum mechanics?

A conceptual revolution: a particle can be a wave and a corpuscle
(wave-particle duality) !

Quantum mechanics unveils a fundamental theory in physics as
the relativity does too

Quantum mechanics fundamentally challenges the rules of all
logic e.g. position, measurement, is that real world?

A technological revolution, more than 50% of the gross domestic
product is driven by quantum mechanics related technologies
(electronics, optoelectronics, nuclear science, lasers, medicine,…)

5
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Starting point
Interferences with particles of matter, tunneling effect
Thought experiments

Mathematical tools
Probability distribution
Fourier transform
Linear algebra

Outcomes
Explain the stability of matter, the chemical bond, etc.
Show various examples of applications of quantum mechanics in
our daily life

Directions 

6



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM7



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM

Section 1

Wave or corpuscle?
The free quantum particle 

8
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1.

From Lord Kelvin’s clouds to 
Louis de Broglie’s waves

9
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Lord Kelvin’s clouds

10

What are the clouds?

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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Lord Kelvin’s clouds

11

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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Lord Kelvin’s clouds

12

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

! Theory of the relativity without concept of absolute time

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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Lord Kelvin’s clouds

13

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

! theory of the relativity without concept of absolute time

2. The black body radiation effect known as the ultraviolet catastrophe

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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Lord Kelvin’s clouds

14

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

! theory of the relativity without concept of absolute time

2. The black body radiation effect known as the ultraviolet catastrophe

! quantum mechanics without concept of universal determinism

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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Blackbody radiation

15

Classical physics can be used to describe the intensity of blackbody
radiation as a function of frequency for a fixed temperature. This is the
so-called Rayleigh-Jeans ’s law!

The equation works for low
frequencies, but totally diverges
for high frequencies

! ultraviolet catastrophe

Planck’s law
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Blackbody radiation

16

Human body Surface of the sun

Blackbody radiation is the thermal electromagnetic
radiation within or surrounding a body in thermodynamic
equilibrium with its environment, or emitted by a black
body that is an idealized object absorbing all frequencies
(e.g. hohlraum in German)
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Planck’s postulate (1900)

17

The Planck’s postulate stands that the energies of the oscillations of
electrons which give rise to the radiation must be proportional to
integral multiples of the frequency

The postulate was introduced in his derivation of his law of black
body radiation in 1900. Planck was unable to justify this
assumption based on classical physics; he considered
quantization as being purely a mathematical trick!

Planck’s constant Modified Planck’s constant
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Albert Einstein (1905)
Assuming a light of pulsation ω and momentum k, the quantum of
particle named « photon* » by Lewis in 1926 holds an energy and
impulsion defined such as:

Is the photon granularity in contradiction with the standard wave
equation which should be continuous (Maxwell)?

How to understand the duality nature of Light? (e.g. Light has both
properties of wave and particle at the same time).

Does the duality still exist for particles of matter (electrons, etc.)?

photon* = Lichtquantum in German

Einstein introduces the concept of light quantization
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Louis de Broglie (1923)
With every particle of matter with mass m and velocity v, a real wave
must be associated, related to the momentum by the equation

In wavelength,

or even

“The fact that, following Einstein's introduction of photons in light
waves, one knew that light contains particles which are concentrations
of energy incorporated into the wave, suggests that all particles, like the
electron, must be transported by a wave into which it is incorporated...”
“My essential idea was to extend to all particles the coexistence of
waves and particles discovered by Einstein in 1905 in the case of light
and photons”
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2.

Waves of matter and interferences
Electron scattering, 1927

20
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Young’s double slit experiments (1801)
The original double-slit experiment in 1801 (well before quantum
mechanics). Young thought to have demonstrated that the wave theory
of light was correct

Single slit : diffraction pattern
Double slit : diffraction pattern and interference fringes
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Double slit experiment with electrons

22

Although electrons are sent one by one, interference fringes could be
observed. These interference fringes are formed only when electron
waves pass through on both sides of the electron biprism at the same
time but nothing other than this

Electrons are accelerated to 50 kV, with a speed of about 120,000 km/s 
e.g. 0.4 ✕ c (~ 10 electrons per second)

Similar to Fresnel’s 
biprism experiment
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Double slit experiment with electrons

At the beginning, bright spots begin
to appear here and there at random
positions. Electrons are detected
one by one as punctual particles

Two electrons identically prepared with
the same initial conditions show
however different impact points

The electron impact point (x,y)
looks somewhat random ??
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Double slit experiment with electrons

24
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Double slit experiment with electrons

Number of electrons accumulated: (a) 8; (b) 270; (c) 2,000; (d) 16,000. 
About 30 minutes is needed to reach stage (d)
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The wavefunction or state function has the important property that is the
probability that the particle lies in a volume element located at r and at
time t

26

First postulate: The state of a quantum mechanical system is completely
specified by a wavefunction

The wave function

The wavefunction must satisfy certain mathematical conditions because
of this probabilistic interpretation

that depends on the spatial coordinates  

Normed function

probability amplitude

probabilty density



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM

It is possible to retrieve
with a good precision if and only if N >> 1

27

Probabilistic interpretation
Assume N particles identically prepared in the same quantum state

For each particle, we measure the position with a detector having a spatial
resolution δx, then we build-up an histogram of the results

ni: number of atoms detected in the ith channel
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Mean value and root mean square

Mean (expectation) value

Variance

Standard deviation
or dispersion

with
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The wave function contains all the information of the system e.g. there is
nothing else in the quantum formalism that would allow to know, before
doing a measurement where the particle will be detected

The probabilism character and randomness behavior does not result
from a lack of knowledge of the initial conditions but is inherently
included in the quantum formalism

No hidden variables, “God does not play dice with the Universe”
(Einstein)
Experiment and theoretical proofs, Bell’s theorem

29

Summary of the 1st postulate
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Superposition principle

The wavefunction is a complex-valued probability amplitude

Interferences

If and are wavefunctions with laws of probability and

then,
is also a possible wave function with the law of probability

Superposition principle is a 
prerequisite for a structure of a 

vector space
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3.

Schrödinger’s equation
(free particle)

31
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What equation for this wave?
Maxwell equations (vacuum)
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What equation for this wave?
Maxwell equations (vacuum)

is a function of and its partial derivatives with respect to
the spatial variables (x,y,z)

Solutions: plane waves
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What equation for this wave?

Let us use the following dispersion relations

The frequency and the wavevector

The energy and the momentum  

MatterLight

Corpuscle

Wave

And the link between wave and corpuscle is give by

X ħ
/ ħ
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What equation for this wave?
Maxwell equations (vacuum)

is a function of and its partial derivatives with respect to
the spatial variables (x,y,z)

?

Solutions: plane waves

Hint: and
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What equation for this wave?
Maxwell equations (vacuum)

is a function of and its partial derivatives with respect to
the spatial variables (x,y,z)

What we want:

Solutions: plane waves

Finally we get,
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Second postulate

The wave function or state function of a system evolves in time
according to the time-dependent Schrödinger equation

Free particle without interaction

De Broglie’s waves are solutions of
Schrödinger equation
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Quiz no1

By integrating of the Schrödinger equation

1. as a function of

2. as a function of and (for t=0)

3. as a function of

What do you get?
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Quiz no1

By integrating of the Schrödinger equation

1. as a function of

2. as a function of and (at t=0)

3. as a function of

What do you get?

See the proof on slide 57 
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Corollary of the 2nd postulate

de Broglie’s waves are solutions of the Schrödinger’s equation

De Broglie’s waves are not normalized e.g a plane wave would
have to fill all space and thus would require infinite energy!

Paramount of importance because         is a probability density 

Norm conservation

and

Try to demonstrate it !
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Applications of de Broglie’s waves
The resolving power of a microscope is limited by the wavelength,
typically a fraction of micrometers with visible light

With an electronic waves operating at much shorter wavelengths, it is
possible to access the tiny details of the structure of matter
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Applications of de Broglie’s waves
Coherent Bragg diffraction

The crystal has a period of a few
Angstroms e.g. the wavelength of the
probe must be adjusted accordingly

Diffraction pattern of a potassium 
layer deposited on a crystal graphite

electrons

neutrons
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4.

Which way?
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What we know

The knowledge of the way followed by the particles (if available) would
definitely ruin the fundamental concepts of quantum mechanics.

If slit 1 is left open, we would not observe any interference but only a
diffraction pattern. Same conclusion if slit 2 is left open.

! The particle passes through slit 1

! The particle passes through slit 2

But,

Events 
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A possible way to track the path

We measure simultaneously the
impact point x of the particle and
the setback direction of the screen
along (Ox)

Path 2

Difference between the two setback 
momentums

Path 1
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How to distinguish the paths?
To distinguish the two events, “the particle passes through slit 1” or “the
particle passes through slit 2”, we have to know the momentum of the
screen before each detection with a precision such as

To observe the interference fringes, we have to position the screen
before each detection with a precision such as

Screen

Fringe interval
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How to distinguish the paths?

We will see later on that it is impossible to prepare a system (particle,
screen, etc.) in a state where both the position and the momentum are
simultaneously known

Using a wheeled screen does not allow to identify the way followed by
the particles while observing interference fringes

Quantum mechanics requires to precise the experimental protocol
! We can make an experiment where interference are observed
! We can make an experiment where the path followed by the particle
is identified
! But we can not do both at the same time
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Relationships for a free particle

Possible events 

randomdeterministic

Wave function

Classical mechanics Quantum mechanics

Intrinsic 
characteristics

State of the 
particle

Equation of 
motion

Type

Mass
Charge 

Mass
Charge 

Position
Momentum 
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Section 2

Position and velocity of a quantum particle
The general Schrödinger’s equation

49
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1.

Fourier transform

50
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From Fourier series to Fourier transform

Periodic function g(x) of class C2

with

Can we express an aperiodic function g(x) as
an integral over a continuum of exponentials?

C∞: smooth functions with rapid decrease (see Schwartz’s space)
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Definition

In Mathematics, the FT is defined in L1 space (integrable functions)

In Physics, the TF is defined in L2 space (square-integrable functions )

= dimensionless  = position

The Schwartz’s space S is used in quantum mechanics. It represents
rapidly decreasing functions C∞ e.g. a function f(x) such that f(x), f′(x),
f′′(x), ... all exist everywhere and go to zero as x → ±∞ faster than any
inverse power of x

= J/s = momentum
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Properties

If            is known, we can calculate             by using 

Is it also possible to retrieve              when the FT            is known?

YES!

FT
MomentumPosition

By definition:        I   is the direct FT of 

is the inverse FT of  
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Scalar product

54

Properties

Isometry of the Fourier transform

YES!

FTFT

Compact notation

Compact notation

Normalization conditions

Scalar product
(see Hilbert’s space)

Isometry
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Derivatives and Fourier transform?

There is no issue in taking the derivatives under the integral term which
is okay owing to the Schwartz’s space

FT

Taking the derivatives in the position space = multiplication by            in 
the momentum space

By definition:        I   is the direct FT of 

is the inverse FT of  
FT

FT

Properties
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Schrödinger’s equation (free particle)

Let consider the initial condition (t=0) of the wavefunction be:
We search the solution of the Schrödinger’s equation

Let us use the Fourier transform

The FT of the Schrödinger’s equation is

This equation easily be integrated

with
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The evolution of the Fourier transform for any t is given by:

Schrödinger’s equation (free particle)

To retrieve                  we use the inverse Fourier transform  

Initial conditions 

! general method to solve the Schrödinger’s equation (free-particle)
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If the particle is in a quantum state , the associated probability
distribution for the momentum is such as

Momentum of the free particle

We know that if is normed then

And we have seen that

e.g. the quantity is not time-dependent (free particle)

In classical mechanics, once the trajectory of the particle x(t) is known,
we can calculate the momentum. Does that remain true in quantum
mechanics?

?

FT
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associated to a particle with impulsion p0, but this wave is not
normalized!

Do we find when

is defined as ?

Time evolution of the mean position (Gaussian wavepacket)

Momentum of the free particle
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Isometry

Derivative

Let us try to re-express as a function of

First, we write the mean momentum as follows

Momentum of the free particle

FT

FT
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The evolution of the mean position of the particle is given by  

Then we have to use the Schrödinger’s equation

Integration by parts assuming

! 0 for

QED

Momentum of the free particle

Try to demonstrate it (not trivial)
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At t=0, the wavefunction of the particle is 

Time of flight measurement: after a certain time such as  
it is possible to show that the position distribution reproduces
precisely the momentum distribution

Momentum of the free particle

Measurement used in cold atom experiments to determine the
momentum distribution of atoms in the optical trap
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Bosons can condense in unlimited numbers into a single ground state 
and not constrained by the Pauli exclusion principle

Bose-Einstein condensates
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Bosons can condense in unlimited numbers into a single ground state 
and not constrained by the Pauli exclusion principle

Bose-Einstein condensates

JILA, University of Colorado, United States
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2.

Position, momentum, energy operators
General Schrödinger’s equation

65
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Position and momentum

Mean position

Later on, we will able to generalize the concept of operators to any 
physical quantities (quantum mechanical observables)

Mean momentum

We introduce the position and momentum operators
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We have seen that the evolution of the wavefunction for a free 
particle is driven by the one dimensional equation

General Schrödinger’s equation

We can rewrite this equation using the momentum operator

with

withor

is the “kinetic energy operator” which coincides here with the total
energy (free particle). The Schrödinger’s equation links time and energy
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Schrödinger’s equation with a potential 

2nd postulate (general case): for a particle of mass m and moving into a
potential V(x), the Schrödinger’s equation is written such as

with

Quantum equivalent of the Newton’s law of motion in classical physics

The idea is to keep the same structure

And we include both kinetic and potential
energies to form the Hamiltonian (e.g.
total energy operator)



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM

3.

Wavepacket
Heisenberg’s uncertainty principle

69
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Physical meaning of the Fourier transform

We have seen the existence of de Broglie’s wave 

associated to a particle with momentum p0, ….. but these waves are not
normalizable!
We can create a new object e.g. a wavepacket which is a superposition of

de Broglie’s waves

Wavepacket

Amplitude
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In classical mechanics we can say:
“Let’s assume a particle with position x0 and momentum p0”

In quantum mechanics we must say:
“Let’s assume a particle described by the quantum state and its
Fourier transform ”

! With a position probability distribution centered at x0

! With a momentum probability distribution centered at p0

71

Wavepackets
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Gaussian wavepacket

For a Gaussian wavepacket, we always have

Mean
Dispersion

Mean
Dispersion

Derivations are analytical with Gaussian functions!

What is the corresponding wavefunction ?
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Quasi monokinetic wavepacket

Well localized wavepacket

Lots of oscillations are observed

A plane wave is retrieved!

A wavepacket cannot be simultaneously well localized
and quasi-monokinetic!

The momentum is not well defined

Gaussian wavepacket
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Heisenberg’s uncertainty principle

Position probability distribution for the particle: 

Can we generalize? YES

Momentum probability distribution for the particle:

We always have

Also true in 3 dimensions
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Quiz no2

What does the Heisenberg’s uncertainty principle mean?

1. It is not possible to prepare a particle in a quantum state such that
both the position and momentum are simultaneously well defined

2. The wavepacket spreads out (true but not related to the question)

3. The product of the precisions of the measured position and
momentum is larger than the modified Planck’s constant
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1. It is not possible to prepare a particle in a quantum state such that
both the position and momentum are simultaneously well defined

2. The wavepacket spreads out (true but not related to the question)

3. The product of the precisions of the measured position and
momentum is larger than the modified Planck’s constant

76

Quiz no2

What does the Heisenberg’s uncertainty principle mean?
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These histograms can not be simultaneously arbitrary narrow. Note that
the uncertainty principle has nothing to do with the resolution of the
equipment i.e. the width of the histogram’s channels

It is not possible to prepare a particle in a state such that both the
position and the impulsion are simultaneously well defined

Quiz no2: solution

Measured position (N particles) Measured momentum (N particles)

Let us consider 2N particles identically prepared
FT



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM

8.

Stability of Quantum Matter

78
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Instability of “classical matter”

Coulomb potential

Kinetic energy

Total energy

Newton’s law

The planetary model of the atom does not make sense
when one considers the electromagnetic forces
involved. The electron in an orbit is accelerating
continuously and would thus radiate away its energy
and fall into the nucleus

The classical matter is unstable !
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Instability of “classical matter”

Coulomb potential

Kinetic energyTotal energy

Equilibrium of forces

Larmor’s formula can be used to calculate the total power radiated by a 
non relativistic point charge as it accelerates or decelerates

Acceleration 
celerity of light  

Typical values

Relative energy lost after 1 cycle 

The relative energy lost after one cycle remains small however the
electron has an angular rate of rotation of 2 × 1016 cycles/s.

The electron would fall into the 
nucleus within 0.4 ns!

Binding energy 

Rest energy 
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Stability of “quantum matter”

Kinetic energy
The uncertainty principle contains
implications about the energy that
would be required to contain a
particle within a given volume

Classical physics Quantum physics

When the radius of the orbit L!0, we observe that the positive kinetic
energy overwhelms the negative Coulomb potential!
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Coulomb potential

Kinetic energy

Equilibrium of forces

Stability of “quantum matter”

Minimum for

Here we extract the the Bohr’s radius of the electron that is the minimum
energy state (ignoring a multiplication factor of ¾)
Quantum mechanics tells us that an ATOM COULD NEVER COLLAPSE
as it would take an infinite energy to locate the electron on top of the
proton
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Section 3

Measurements in quantum mechanics

83
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1.

The measurement of physical quantities: 
position, momentum, & energy 

84
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Position and momentum
Point particle with wave function

Position probability distribution

Expectation

Measure of the momentum through a time of flight experiment
FT

that is equivalent to 
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Quiz no3

1. The operator only acts on the function

and the operator only acts on the function

2. The operators and act both on and

3. The Hamiltonian is the sole operator acting both on and

Operators and quantum states
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Quiz no3

1. The operator only acts on the function

and the operator only acts on the function

2. The operators and act both on and

3. The Hamiltonian is the sole operator acting both on and

Operators and quantum states
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Operators
Expectation values

Inner (scalar) product in L2 space
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Operators
Position operator

Momentum operator
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3rd postulate (weak version)

Hermitian operator

is an operator acting on the wave function space

If a system is in a state described by a normalized wave function    , the
then, the average value        of the observable corresponding to       is 

To every observable in classical mechanics there corresponds a linear,
Hermitian operator in quantum mechanics
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Physical quantity

Position

Momentum

Total energy

Angular momentum

Hamiltonian

Angular momentum 
operator

Action of the corresponding op. on

Multiplication by
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2.

Eigenvalues and eigenfunctions of 
operators in quantum mechanics 

92
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Spectral theorem:  If the operator   I is Hermitian, there exist an
orthonormal basis of consisting of eigenvectors of     
! Each eigenvalue is element of the set of real numbers
! The operator        is diagonalizable 

An eigenfunction of an operator defined on the wave function
space is any non-zero function in that space that, when acted
upon by is only multiplied by some scaling factor called an

eigenvalue

93

Definition

Note the occurrence of some subtleties when moving to a complex 
space with an infinite-dimension! (see later on)
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Let us search the eigenvalues and eigenfunctions of the momentum
operator

94

Example: The momentum operator

! The eigenfunctions of the momentum operator are the plane waves
! The spectral distribution of the momentum (e.g. the set of eigenvalues) 
is the whole set of real numbers 

with 
Eigenfunctions

Eigenvalue 
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Eigenfunctions of the Hamiltonian

1
D

Play a crucial role to describe the evolution of many quantum systems

Solutions usually not trivial (! numerical analysis)
Some cases can be solved analytically

Harmonic potential

Coulomb potential

Constant piecewise potentials
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Infinite well potential
Particle in a box

Boundary conditions: The wave function is always continuous!

To simplify we assume
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Infinite well potential

! All wavevectors k can take only discrete values

! And all eigenvalues of the energy are quantized

General form of the solutions

Boundary at 

Boundary at 

We assume the energy E >0  and 
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Infinite well potential
Eigenfunctions of the Hamiltonian can be expressed as follows

Normalization

with and

Orthonormality

The set of functions I is an orthonormal base of functions such as

Similar to a Fourier series expansion
Similar to a decomposition in a vector subspace

(Kronecker delta)

The wave function can be represented by the expansion
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Infinite well potential

! An electron in a quantum well of diameter L = 6 × 10-9 m
E1=10 meV

! A nucleon (proton or neutron) in a nucleus of diameter L = 4 × 10-15 m
E1=10 MeV
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Light emission from a quantum well

Atomic layers

Gallium nitride

100
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A key application: Semiconductor lasers

101

Optical communications
Gas/molecule detection

! Medical (breath analyses)
! Environment (air pollution)
! Security  (explosive detection)

Countermeasures
Atmospheric communications

Diode lasers and quantum cascade lasers can produce stimulated light 
from near infrared to THz range!
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3.

What results for a single measurement?

102
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The result of the measurement of      is predicted with certainty if and 
only if the state           is an eigenstate of observable  

103

Relationship between measured 
results and eigenvalues?

We want to measure a physical quantity      of a particle prepared in the
quantum state 

If the measure of      is predicted with certainty

Example: we found that an eigenstate of the Hamiltonian corresponds to 
an energy level of the quantum well (particle in a box)

Proof:

QED
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Relationship between measured 
results and eigenvalues?

We assume the system in the state           in such way that the physical 
quantity      is well defined (no fluctuations among the measured results)

Then, 

Converse?

is an eigenstate of      with the corresponding eigenvalue 

Proof

QED
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Relationship between measured 
results and eigenvalues?

Conclusion: The measurement of is predicted with certainty if and
only if the state of the particle is an eigenstate of
! The result is the associated eigenvalue (must be a real number )
! An eigenstate is basically a state without dispersion

We assume the system in the state           in such way that the physical 
quantity      is well defined (no fluctuations among the measured results)

Converse?

Then, is an eigenstate of      with the corresponding eigenvalue 
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What to expect from a measurement?
The measurement of a physical quantity gives a number (or a set of
numbers) which brings information on the system under study

The result is trustable if and only if the measurement of a physical
quantity done over a short period of time gives the same numbers
(repeatability)

A short period of time means that the state of the system does not
substantially evolve between two consecutive measurements (i.e. same
experimental conditions)

Ex: Distribution of human height

Height

Frequency
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Which state after the measurement?
Time  t1

Time t2Energy levels in a 
quantum well

Measurement 
of energy
Result is ε

What are the 
possible values?

State after the 
measurement?

Another 
measurement on 

the same system at 
t2 and performed 

immediately after t1
must give the same 

result with 
certainty

The measurement performed at t2 is predicted with certainty if and only if:
(a) The energy ε must be an eigenvalue of the energy operator i.e. is an 

element of the set of the eigenvalues En

(b) The system has to be in an eigenstate of the energy operator at t2

Measurement at t1:

Initial state
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Possible results?
In any measurement of the observable      associated with operator     , the 
only values that will ever be observed are the eigenvalues of 

If the particle, before the measurement, is in whatever state

If the particle, before the measurement, is in an eigenstate of then
the result is with certainty the eigenvalue

Then the result is randomly an eigenvalue of the set of
What is the corresponding probability law?

We know that

leading to the probability law

with
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(b) The probability that eigenvalue will occur -- it is the absolute value

squared of the coefficient,

109

3rd postulate (strong version)
In any measurement of the observable      associated with operator     , the 
only values that will ever be observed are the eigenvalues, which satisfy 
the eigenvalue equation

Before the measurement: with

(a) If the system is in an eigenstate of with eigenvalue then any
measurement of the quantity will yield .

Eigenvalue (non-degenerate) 

Orthonormal eigenfunctions

(c) After measurement of yields some eigenvalue , the wave
function immediately collapses into the corresponding eigenstate .
In the case that is degenerate, becomes the projection of onto
the degenerate subspace associated to the eigenvalue



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM110

What to learn from a measurement?
A single measurement performed on a single particle reveals information
on the state of the quantum system after the measurement

From this single measurement, we cannot retrieve the state
We only know that pα2 is not zero

unkown Classical 
apparatus 

If the result is α2 the state 
immediately after is 

The wave function is modified in an irreversible way by the measurement  
Wave function collapse e.g. quantum decoherence
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What to learn from a measurement?

unkown Classical 
apparatus 

If we prepare N particles in the same quantum state (unknown), it is
possible to determine the probabilities pα. This would require to perform
only a single measurement of on each particle

From it is possible to retrieve at least partially 
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4.

Eingenstates of the Hamiltonian & 
Resolution of the Schrödinger equation

112
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Evolution of an eigenstate
We determine the eigenstates of the Hamiltonian

Initial wave function:

The set of functions I is an orthonormal basis of wave functions

Wave function at time t:

Proof

with

QED
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Eigenstates of the Hamiltonian
Consider the particle in the initial state at t=0

Then, the solutions of the Schrödinger equation at time t is given by

! the probability density is time independent

Also valid for all expected values associated to any physical quantities

The eigenstates of the Hamiltonian are stationary states

Wave packet 
collapse

No time 
dependence!
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Schrödinger’s cat
A diabolic trap: A cat, a flask of poison, and a radioactive source are
placed in a sealed box! If an internal monitor (e.g. Geiger counter)
detects radioactivity (i.e. a single atom decaying), the flask is
shattered, releasing the poison, which kills the cat!
The principle of superposition tells that the cat is both dead and alive
e.g. the cat is in a superposition of different states

Which state for the cat?
Was it a stupid question?

Schrödinger’s cat in the garden of the
Zu Vier Wachten (Zürich). Depending on
the light conditions, the cat appears
either alive or dead.
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Schrödinger’s cat
NO because a quantun system is in a superposition of different states
Remember the double-sit particle experiments. Which way?

Schrödinger’s cat brings the following question: Can we observe
macroscopic quantum states superposition? We also see that this
thought experiment contains the concept of entanglement (i.e. cat/atom,
photon/slits)
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Schrödinger’s cat

Rydberg’s atoms

S. Deléglise et al, Nature, vol. 455, pp. 510 (2008)
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Schrödinger’s cat

S. Deléglise et al, Nature, vol. 455, pp. 510 (2008)

By doing quantum interferences, it is possible to show that “AND” in
quantum mechanics can be transformed into “OR” like in classical
physics (quantum decoherence)

By producing quantum interferences, it is possible to show that a
“AND” in quantum mechanics can be transformed into a “OR” in
classical physics (quantum decoherence)

Interferences represent the cat’s 
quantum coherence

Quantum states: cat “dead” or “alive”
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Schrödinger’s cat

Quantum 
decoherence

Quantum state Classical state

Classical-quantum limit: objects with large number of particles does not
see any superposition i.e. the time for quantum decoherence is ultrafast
and scales with the number of particles

By producing quantum interferences, it is possible to show that a
“AND” in quantum mechanics can be transformed into a “OR” in
classical physics (quantum decoherence)
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Superposition & quantum decoherence
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Section 4

The Quantum Harmonic Oscillator*

121

*Dirac’s notations used in this section are explained in section 6 
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What we know from classical mechanics
The simple harmonic oscillator describes linear, undamped oscillatory
dynamics like mass-spring systems, vibration of molecules, LC
circuits, etc

Classical solutions

Potential energy

The force needed to extend or compress
a spring by some distance is
proportional to that distance
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Turning points

Now let us move to the quantum harmonic oscillator which is useful to
explain the quantization of the electromagnetic field, and oscillations of
the certain molecules like NH3

The total energy of this system is conserved and oscillates between
kinetic and potential

constant

What we know from classical mechanics
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Quantum harmonic oscillator

Annihilation or lowering operator

Creation or raising operator

We can rewrite,

and

And the following operators

Consider the Hamiltonien

leading to
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Quantum harmonic oscillator

The Hamiltonian can be written as

with the “Number operator” 
(Hermitian)

Commutation relationships

We can demonstrate that the eigenstates of are also eigenstates of

Eigenvalue equation are real eigenvalues
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Quantum harmonic oscillator

Since we have proved that

the energy eigenvalue corresponding to state          is defined as follows 

We can also observe that,

is an eigenfunction of and

“creates” (“annihilates”) one unit of energy
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Quantum harmonic oscillator

Then we end up with the following relations

This means that     must be real and nonnegative 

Assuming           is normalized, we get
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Quantum harmonic oscillator

If is a positive integer, this sequence must terminate when we
get to

If is not a integer, then the sequence won’t terminate since can
be negative. But we proved all are positive

Ergo, the sequence terminates at and in general must be a
nonnegative integer

Let us apply sequentially to an eigenstate
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Quantum harmonic oscillator
We can construct the form of the eigenstates in Hilbert space
using if we know
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Quantum harmonic oscillator

If we move back to the x-representation

The normalized solution to this differential equation is Gaussian

with
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Quantum harmonic oscillator

For >0, we can construct

Hermite polynomials such that

In general, we have

Polynomial expression

Further readings: Arfken and Weber, Mathematical Methods for Physicists, Academic Press, Wiley
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Quantum harmonic oscillator

Classical mechanics

Quantum mechanics

The ground state (lowest energy eigenstate) has energy        
(zero point energy)
The set of energy En is discrete (bound states) and evenly spaced

We define e.g. applying       to the lowest energy eigenstate
destroys the state

Large n ! classical case
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Section 5

Quantization of Simple Physical Systems

134

Alice going thru a looking glass, After Lewis Carroll
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Quantum corral reef

Scanning tunneling microscopy: this image shows 48 iron atoms
positioned into a circular ring. The ripples in the ring of atoms are the
wave patterns of some of the electrons that were trapped in the corral

After IBM
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1. 
Bound and scattering states
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Reminders

Hamiltonian

Search the eingenstate of the Hamiltonian

Real eingenvalue (energy)

! Time independent Schrödinger’s equation 

Once we know we can calculate the evolution of 

! Time evolution of the wave function state



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM138

Bound & scattering states

Two interesting cases

behaves as a combination of plane waves at infinity 

goes to 0 when x ! ∞ 

Can be used to create wave packets ! scattering states

when

! bound states

State eligible as a wave function

Consider a potential which tends to V0 when x!∞

If
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Bound & scattering states

behaves as a combination of plane waves at infinity 

goes to 0 when x ! ∞ 

Can be used to create wave packets ! scattering states

when

! bound states

This state is eligible as a wave functionIf

Beyond V0, energy continuum: Scattering states (i.e. domain 
of the plane waves) 

Between Vmin and V0: Bound states (finite number of elligible
states)

No relevant states for E<Vmin
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Steady-state solutions 

Two interesting cases

behaves as a combination of plane waves at infinity 

goes to 0 when x ! ∞ 

when

! bound states

This state is eligible as a wave functionIf
IES1>: 1 node

IES2>: 2 nodes

IGS>: no nodes

Sturm-Liouville theorem (real wave functions): As we change to a
higher energy level, the index n grows, and we have more nodes
(points where the sign changes) of the wave function

Case of symmetric potentials: Odd or even eigenfunctions
(nondegenerate) or whatever (degenerate)

Further readings: Arfken and Weber, Mathematical Methods for Physicists, Academic Press, Wiley
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Boundary conditions
Consider a potential which tends to V0 when x!∞

Continuous, 
bounded 

(real case)

Potential V(x)

Discontinuous, 
bounded 
(step-like)

Discontinuous, 
unbounded 
(wall-like)

Wave function φ(x)

Continuous, bounded, 
2nd order derivative ok

Continuous, bounded, 
No derivatives

(i.e. φ’(x) discontinuous)

Continuous, bounded, 
1st order derivative ok 

(i.e. φ”(x) discontinuous)



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM142

2. 
Semi-infinite well potential
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Scattering states
Consider the case with E > V0

Then, we have to write the boundary conditions at

Region 2

Region 1

143
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For all energies larger than the asymptotic value of the potential, we
found an eigenstate of the Hamiltonian. The eigenstate behaves like a
plane wave at infinity

144

Scattering states
Consider a potential which tends to V0 when x!∞
At the wave function     and its derivative      are continuous 

System of linear equations (2 equations, 3 variables) for all E>V0

The trivial solution is
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Bound states
Consider the case with E < V0

Then, we have to write the boundary conditions at

Region 2

Region 1

We must eliminate the term which
does not have a physical meaning
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At

146

Bound states

the wave function     and its derivative       are continuous 

System of linear equations (2 equations, 2 variables) leading to the
following solution (excluding the trivial solution)

For given values of m and V0, the above equation can only be fulfilled
for discrete values of the energy E
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Semi-infinite well potential

Continuum of energy states for     

Bound states (finite number) for 
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Example: Big-bang nucleosynthesis

Proton-neutron: 1 bound state! 

p-n distance

Interaction 
energy

Thermonuclear reactions

Big-bang nucleosynthesis: The initial conditions (neutron-proton ratio)
were set in the first second after the Big Bang ! the first atoms in the
Universe!
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3. 
Tunneling effect
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Transmission coefficient

As opposed to the classical case, quantum mechanics allows a non zero
transmission coefficient that depends both on width and height of the
tunnel barrier (quantum tunneling effect)

goes to 0 when x ! ∞ 

Consider a particle with a mean energy E<V0

particle

Not that this number is extremely small for macroscopic objects … at
least as small as the probability to see the spontaneous flipping of a
coin on a table (10-1000000000000000000000000000)
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Analogy with wave optics
The tunneling effect can be simply observed in wave optics!   

Optical AnalogyPotential barrier

Glass (n=1.5)

Air (n=1.0)

i1

i2

refraction
n1sin(i1)=n2sin(i2)
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Optical AnalogyPotential barrier

Glass (n=1.5)

Air (n=1.0)

i1

i2

Refraction
n1sin(i1)=n2sin(i2)

Refraction
Critical angle

Analogy with wave optics
The tunneling effect can be simply observed in wave optics!   
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Frustrated total internal reflection

Optical AnalogyPotential barrier

Glass (n=1.5)

Air (n=1.0)

i1

i2

refraction
n1sin(i1)=n2sin(i2)

refraction
Critical angle

Total internal 
reflection

The tunneling effect can be simply observed in wave optics!   
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Frustrated total internal reflection

Optical AnalogyTunnel barrier

Glass 

Air 

Glass 

The tunneling effect can be simply observed in wave optics!   
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Frustrated total internal reflection

Optical AnalogyTunnel barrier

Glass 

Air 

Glass 

Frustrated total 
internal reflection

The tunneling effect can be simply observed in wave optics!   
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Frustrated total internal reflection

Optical AnalogyTunnel barrier

Glass 

Air 

Glass 

Frustrated total 
internal reflection

The tunneling effect can be simply observed in wave optics!   
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Frustrated total internal reflection
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Tunelling effect

Similar to an evanescent wave (or a decay wave) in wave optics
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Quantum tunneling

Two interesting cases

goes to 0 when x ! ∞ 

Consider a transmission coefficient of 0.24

Let us give some numbers

Cold atoms Nuclear physics Atomic physics

Universality of the quantum tunneling effect!
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Scanning tunneling microscopy

Nickel surface, (D. Eigler, IBM)

Binning & Rohrer (IBM) 1981-85
Nobel prize winners 1986

The tunneling current changes very quickly with the distance (due to the
exponential term in the transmission coefficient)
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Scanning tunneling microscopy
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Moving atoms one by one

Nanomanipulation: The STM tip is used to lift and put down the
atomic units

A set of STM images showing formation of a quantum coral from 48 
Fe atoms adsorbed on the surface of Cu(111)
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Moving atoms one by one

Carbon monoxide man (IBM)

Stadium coral: Iron atoms on a 
copper surface (IBM) 
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Ultracold atoms

The lattice potential is reduced and then we let atoms tunnel for a given
time and finally we can measure their positions (wave packet spreading
! time of flight measurement)

v= 5 mm/s, 100 nK
10 peV, λdB=1 micron

We use set of lasers to localize atoms (standing wave)

Atoms
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Ultracold atoms

The lattice potential is reduced and then we let atoms tunnel for a given
time and finally we can measure their positions (wave packet spreading
! time of flight measurement)

v= 5 mm/s, 100 nK
10 peV, λdB=1 micron

We use set of lasers to localize atoms (standing wave)

Atoms
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Quantum horse race

C. Weitenber et al., Nature, vol. 471, pp. 319, (2011)
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Alpha radioactive decay
Alpha decay or α-decay is a type of radioactive decay in which an 
atomic nucleus emits an alpha particle (helium nucleus) 

Energy of the particle E is 4 to 9 MeV
Probability of disintegration T is 10-6 s 
to 1018 s 

Potential 
wall due to 

nuclear 
forces Coulomb barrier
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4. 
Double well potential
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How to explain the chemical bond?

We will show that the tunneling jump of the electron from orbit 1 to orbit
2 lowers the energy. This effect is enhanced when the two nuclei are
located relatively close to each other

Attraction between atoms explains the chemical bond

2 nuclei and 1 electron (Dihydrogen cation i.e. ion H2
+)

electron

Nucleus 1 Nucleus 2

electron

Nucleus 1 Nucleus 2
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Ammonia (NH3)

The fundamental state of the molecule is in a superposition of two
configurations « Left » and « Right », hence quantum oscillations take
place between the two states through tunneling effect

Under the right conditions, ammonia molecules can be flipped. Imagine
you are looking at an open umbrella from the side. A strong wind comes
along and turns the umbrella inside out!

Left configuration Right configuration
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Double well potential 

Consider the energy levels such as E<V0

What is the role of the tunneling effect across the barrier ?

As the Hamiltonian H(x) is invariant i.e. H(-x) = H(x), the eigenstates of
the Hamiltonian can be described through a linear combination of even
(symmetric) and odd (antisymmetric) functions

“Left (G)” “Right (D)”
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Double well potential 

Consider the energy levels such as E<V0

Role of the tunneling effect across the barrier ?

The potential V(x) is an even function e.g. the eigenstates of the
Hamiltonian can be described through even or odd functions
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Double well potential 
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Energy levels

symmetric

antisymmetric

symmetric

antisymmetric
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Energy levels

symmetric

antisymmetric

symmetric

antisymmetric

2a

Infinite well
Width 2a
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Energy levels

symmetric

antisymmetric

symmetric

antisymmetric

2a

Infinite well
Width 2a

E1, E2, etc.: energy 
levels of semi-infinite 

well of width a

a
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Energy levels

symmetric

antisymmetric

symmetric

antisymmetric

2a

Infinite well
Width 2a The tunneling effect raises the 

degeneracy of the two initial states

E1, E2, etc.: energy 
levels of semi-infinite 

well of width a

a

Two states for each 
energy
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Niveaux d’énergie (II)Energy levels

Antisymmetric

Symmetric

Symmetric
Antisymmetric

Two states of 
each energy

Two states 
antisymmetric
& symmetric 

The molecule appears in a superposition of two configurations « Left »
and « Right », with quantum oscillations taking place between the two
states through tunneling effect



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM179

Summary

Not steady-states

if

with

Symmetric

Antisymmetric

Symmetric

Ground state level of 
the semi-infinite well

First excited state level 
of the semi-infinite well

Use Sturm-Liouville’s
theorem p. 140 !

Antisymmetric
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Chemical bond

The cleavage 2A depends on the distance R between the two nuclei

Antisymmetric = antibinding orbital

Symmetric state = binding orbital (stable)

E

electron

Nucleus 1 Nucleus 2

electron

Nucleus 1 Nucleus 2

Electrostatic 
repulsion
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Ammonia in an electric field

Objective: Using this molecule as a source of radiation

Amplification by stimulated emission of radiation

MASER (small spontaneous emission with microwaves)

LASER (large spontaneous emission with light) 

Operation in two steps

(1) How to transfer energy to the molecule?
Population inversion is obtained by using a static electric field to
select a given quantum state

(2) How to extract this energy as a radiation?
Stimulated emission of radiation is obtained by using an oscillating
electric field at frequency ω0
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Ammonia inversion

For both eigenstates

Probability densities are symmetric
and time independent (i.e. stationary
states) with values of ½ for each state

Consider the ammonia inversion doublet with the lowest energy level

E1=0
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Ammonia inversion

with eigenvalues

are eigenstates of the H

The Hamiltonian in the basis is                          diagonal

then

general expression with 
a, b, c, and d real numbers

(Taking E1=0)
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Ammonia inversion
States “Right (D)” and “Left (G)”

Those are not stationary states!

If

then

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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Ammonia inversion

If

If the molecule is initially prepared to be in the “Right” configuration,
over time, the molecule will be oscillating at frequency ω0 between
“Right” and “Left” dispositions

Nitrogen inversion ! oscillating dipole ! radiation at frequency 

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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Ammonia inversion

Frequency and wavelength

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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Position operator 

It is not a position but rather a
disposition with respect to the
center (non-diagonal operator)

Consider the following matrix elements

Parity
+

Real   
functions

In the basis
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Position operator
Let us determine the eigenvalues and eigenvectors

and

In the basis                       the position operator is a diagonal with 
eigenvectors that are linear combinations of A and S quantum states
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Time evolution

We have seen that if

The expectation value of the position operator oscillates over time
hence which proves the motion of inversion of the molecule

Then, we get
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Quiz no4

1. ΔX =0

2. ΔX= x0

3. ΔX= x0/√2

In “Right” (D) and “Left”(G) states, what is the dispersion ΔX of the 
position operator?

In this basis, the operator is diagonal and the eigenvectors are linear 
combinations of the symmetric and anti-symmetric quantum states 
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Quiz no4

1. ΔX =0

2. ΔX= x0

3. ΔX= x0/√2

In “Right” (D) and “Left”(G) states, what is the dispersion ΔX of the 
position operator?
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If we measure X again immediately afterwards, before the oscillation is
appreciable, we find +x0 with probability 1; the state after the
measurement is

Suppose we start with an energy eigenstate

If we measure X, we can find ± x0 with probabilities 1/2

Suppose the measurement has given the result +x0; the state right after
the measurement is then

192

Interference & measurement
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Now, suppose that, on this new state we measure not X but the 
energy E which we are sure was E = ES when we started. We know that 
that we do not always find ES but the two possibilities ES and EA, each 
with a probability of 1/2
! We see in this case how the measurement has perturbed the system

At the beginning, the state was |ψS ; 

At the end it is a mixture of |ψS and        I    in interference, for which 
<E> = (ES + EA)/2
All of this results from the superposition principle on one hand and the 
filtering of which a measurement consists

!A position measurement implies a minimum energy exchange with 
the system. Here, on the average, the exchange of energy is equal to A

Interference & measurement
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Ammonia inversion
Static electric field

Permanent electric dipole
Interaction energy with the field

Ammonia in an electric field

In other words, if we measure X and we find ±x0 with some probabilities,
a measurement of D will give ±d0 with the same probabilities
The only difficulty, here, is to accept that a good model for the
observable D, is to be proportional to X
The potential energy observable W is simply the product of the
observable D by the numerical value of the applied electric field. The
only real justification for this choice is that it works very well
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Ammonia inversion
Static electric field

Permanent electric dipole
Interaction energy with the field

When the nitrogen flips from one side to the other, the center of mass 
will not move, but the electric dipole moment will flip over

Ammonia in an electric field
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Ammonia inversion
Static electric field

Permanent electric dipole
Interaction energy with the field

When the nitrogen flips from one side to the other, the center of mass 
will not move, but the electric dipole moment will flip over

Ammonia in an electric field
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Frequency and wavelength

Eigenvalues

Ammonia in an electric field
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Ammonia inversion

Eigenvectors

which can be expressed as 

Ammonia in an electric field
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Ammonia inversion

Frequency and wavelength

Eigenvectors

Time evolution

Probability           of         of switching from A to S

Ammonia in an electric field
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Ammonia in an electric field

Consider the two limiting cases:
! Weak field effect (⍬ << 1), the tunneling effect tends to symmetrize

the molecule, which results in a vanishing dipole moment <D> = 0
! Strong field effect (⍬ = π/2) pulls the molecule toward the classical

configurations D and G (“Right” and “Left”) where it has a dipole
moment <D> = ± d0
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The ammonia gas is simply let out of a little jet and passed through a
pair of slits to give a narrow beam. The beam is then sent through a
region in which there is a large transverse electric field

We have reached population inversion 
At the output, the system is out of the 

equilibrium

Ammonia in an inhomogeneous electric field
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Here we face an incredible phenomenon. There are only two quantum
trajectories whereas classically, if the electric dipole moments were
oriented at random there should be a continuous set of impacts on a
screen

This apparatus is a concrete example of a quantum mechanical
measuring apparatus. It transfers internal quantum degrees of freedom
into classical space properties. It is also a device to prepare the
molecules in the states S or A , or in linear superpositions of them

Ammonia in an inhomogeneous electric field
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Reaction to an oscillating electric field
Interaction energy between the dipole and the field

leading to

Here we have time dependent Schrödinger equation hence the standard
method does not apply anymore!!

Rotating wave approximation: Terms in a Hamiltonian which oscillate
rapidly can be neglected. This is a valid approximation as long as the
applied electromagnetic radiation takes place near the resonance with
an atomic transition, as well as the intensity is low
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Reaction to an oscillating electric field

Time dependent Shrödinger’s equation

leading to

Consider the substitution
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Reaction to an oscillating electric field
Time dependent Shrödinger’s equation

The substitution leads to

Using the rotating wave approximation, fast oscillations terms are
neglected in the above equations ! solutions are analytically extracted

with
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Reaction to an oscillating electric field
Time dependent Shrödinger’s equation

The substitution leads to

Using the rotating wave approximation, fast oscillations terms are
neglected in the above equations ! solutions are analytically extracted

with
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Reaction to an oscillating electric field
Time dependent Shrödinger’s equation

Then we get

with

Consider the initial conditions

Then we get
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Reaction to an oscillating electric field

Probability of switching from A to S

with an oscillating electric field with frequency ω applied from 0 to t

And with a static electric field applied from 0 to time t, we retrieve 
as in pp. 198

Rabi’s formula (resonant excitation obtained for δ=ω-ω0=0)  
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Reaction to an oscillating electric field
Probability of switching from A to S

Rabi’s formula
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Stimulated emission
Molecule in a state A with energy EA in interaction with an electric field
oscillating at ω0

Amplification by stimulated emission of radiation
MASER & LASER 

! The field induces the stimulated emission of the molecule 
! Then, the molecule yields its energy to the field. If the field is 

confined in a cavity, the process is reversible
! The field at the outside the cavity is greatly amplified
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Maser & Laser
First Maser (C. Townes, 1954)

P=10-9 W, f=24 GHz (microwave) 
First Laser (T. Maiman, 1960)
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4. 
Electrons in solids
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Electrons in solids
The Kronig-Penney model demonstrates that a simple one-dimensional 
periodic potential yields energy bands as well as energy band gaps 

Bloch wave Double periodicity 

Bloch's theorem: The energy eigenstates for an electron in a crystal can
be written as Bloch waves i.e. the electron wave functions in a crystal
have a basis consisting entirely of Bloch wave energy eigenstates
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Electrons in solids

Consider the solutions of the Schrödinger’s equation in regions I, II and III
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Boundary conditions (continuity and derivatives x=0 and x=c)

We can express the general solution as follows

Electrons in solids

with

Consider the following conditions: We search bound states and assume 
narrow barrier, and strong tunneling
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Electrons in solids

with

Only allowed energies are those for which −1 ≤ F(⍺a) ≤ 1
Whenever F(⍺a) is outside the domain [−1, 1], there are no solutions

No solution in the 
gray area
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Solving equation for k, we see the dependence of the energy and the
formation of allowed and forbidden energy bands

217

Electrons in solids

For k=0, we can find a non-zero energy as for a particle confined in a box
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Solving for k we see the dependence of the energy and the formation of
bands. Notice that a gap opens in the energy spectrum at

218

Periodicity

Electrons in solids

Free electron
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Section 6

Hilbert space, Dirac’s notations and matrix 
mechanics

219

After Richard Feynman

For further information, read the supplementary material 
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Ket vector

220

Introduced by . P. A. MDirac in 1926

The ket is a normed vector that is an element of
an abstract complex vector space e.g. the
infinite-dimensional vector space of square
integrable wavefunctions
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A Hilbert space         is a linear vector space whose elements are functions 
or  vectors         with a positive-definite scalar product 
The dimensionality of the Hilbert space is the number of linearly
independent vectors/states needed to span it (may be finite or infinite)

Hilbert space

221

Linearity

Properties 
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The Hilbert space         I       is the set of all square-integrable functions 
f(x) on the interval [a,b], i.e., f(x) such that 

Hilbert space

222

Inner product in 

Note the infinite dimensionality of the Hilbert spaces (evidenced by the
infinite number of energy eigenfunctions, which comprise possible
bases for these spaces)

Free particle Infinite square well 
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Every physical system can be represented by a unique Hilbert’s space 

The state of a given physical system is described by a single vector
state (normed vector) of unit length in the system’s Hilbert space

Generalization of the 1st postulate

The Hilbert’s space satisfies the principle of superposition

Existence of Hilbert’s basis composed of eigenstates
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Inner product

All acceptable vectors for a complete description of the quantum
system must be normalized

then

! linear with the second argument, anti-linear with the first argument 

The inner product is defined using the braket notation
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Bra vector

The bra labeled vector is obtained by forming the row vector and
complex conjugating the entries

Inner product

Braket = complex number
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An operator is described by a matrix acting in the Hilbert’s
space basis

226

Matrix mechanics

Column 
vector

Row 
vector Square

matrix

Operators are Hermitian (or self-adjoints) if and only if
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Matrix mechanics

All eigenvalues of Hermitian operators are real. Therefore, (by postulate),
all operators for physical observables are Hermitian (because measured
quantities are real numbers). Some subtleties persist with Hilbert’s
space with infinite dimensional case

Examples of Hermitian operators

Spectral theorem: a Hermitian matrix is diagonalizable and as a
consequence it is possible to find a Hilbert’s basis composed of
eigenvectors

such as
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The Hamiltonian 

Dipole in an external magnetic field (B)

Dipole in an external electric field (E)

Particle of mass m in a potential

Energy operator: HamiltonianPhysical quantity: energy

As in classical physics, possible values for the energy will depend on 
the physical configuration of the problem

Potential energy 
of Interaction
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Projection operator

is an operator (not closed braket)

is a projector

is a projector on state

Here the operator projects a vector onto 
the nth eigenstate
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Projection operator
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Completeness relationship
If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity
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Completeness relationship

If the eigenvalues indexed by n range over a continuous set of values,
the summation becomes an integration

If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity
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Right after the measurement with result (an), the system is projected
onto the vector subspace
This means that a second measurement performed immediately after will
produce the same result (an)

Generalization of the 3rd postulate 

The probability of measuring eigenvalue (an) is given by

233

In any measurement of the observable      associated with operator     , the 
only values that will ever be observed are the eigenvalues, which satisfy 
the eigenvalue equation

The result of a measurement is one of the set of eigenvalues (an) of 

Non degenerate
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After the measurement

Generalization of the 3rd postulate 

The probability of measuring eigenvalue (an) is given by

234

In case of degenerate eigenvalues the dimension of the Hilbert space is 

The result of a measurement is one of the set of eigenvalues (an) of 

Degenerate

with
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Infinite dimensional case

A “good operator”: Hamiltonian of the harmonic oscillator

A “delicate operator”: the momentum

Continuous spectrum

Discrete spectrum

! Set of real numbers

Eigenfunctions

Eigenfunctions (Hermite polynomials)

Not  included in Hilbert space of square-integrable functions 

Included in Hilbert space of square-integrable functions 
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Position and momentum space

Inner product

is the value of the wave function at position x is
simply the projection of the state onto an
eigenstate

Probability of measurement of x 

Probability amplitude for  measurement of p 
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Position and momentum space

Conversion between and

Similarly 

The conversion between position and momentum space is
mathematically a Fourier transform because
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Discrete vs continuous

with discrete eigenvalues 

with continuous eigenvalues 

Dirac delta functionKronecker delta function
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Commutators
Commutators between two operators are defined as 

Two operators commute (or are compatible) if 

To figure out commutation relations, apply the operators on a test 
function and look at the end result (sans test function)

Example: the canonical commutation relation [xˆ, pˆ] = i . x

Note that if two operators commute, it becomes possible that the same
state will be an eigenfunction of both operators. Then the two
corresponding observables can be simultaneously specified for that
state. The eigenvalues of the observables are basically “good quantum
numbers” of the state
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Commutators
Commutators between two operators are defined as 

Two operators commute (or are compatible) if 

To figure out commutation relations, apply the operators on a test 
function and look at the end result (sans test function)

Example: the canonical commutation relation [xˆ, pˆ] = i . x

Generalization of the Heisenberg’s uncertainty principle
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Time evolution
Evolution of the state vector                

Then we get

If eigenstates of the Hamiltonian  are known (not time dependent)

We can write the following decomposition

with
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Propagator
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Time evolution with propagator

In absence of any measurement the evolution of the state vector                
is given by

The Hamiltonian generates the time evolution of the vector state

is a unitary operator such as

with
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Summary
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Summary
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Section 7

Spin angular momentum
The Stern-Gerlach experiment

247
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1. 
Principle and interpretation
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1922: Stern and Gerlach (Silver atoms)

1927: Philips and Taylor (Hydrogen atoms)

The experiment demonstrated that the spatial orientation of angular
momentum is quantized. In the original experiment, silver atoms were
sent through a non-uniform magnetic field, which deflected them
before being detected on a screen. The screen reveals discrete
points of accumulation rather than a continuous distribution, owing
to the quantum nature of spin

This experiment was decisive in convincing physicists of the reality
of angular momentum quantization in all atomic-scale systems

The Stern and Gerlach experiment
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Charged particle

Magnetic dipole on a current loop

Torque

Lorentz’s force

Magnetic moment

! rotation always in direction to align μ with B field 

Refreshers
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Potential energy of interaction 

! The magnetic moment of a compass is such that the corresponding
potential energy is always minimized

Corresponding force

Refreshers

Angular momentum of an electron in an atom (orbital motion)



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM252

Orbital angular momentum
Consider a semi-classical description of the hydrogen atom where
electron (charge q<0, mass m) revolves in a circular orbit
around the proton (uniform motion)

Orbital angular momentum

Magnetic moment

with
Gyromagnetic 

ratio

The gyromagnetic ratio is negative for an electron
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Larmor precession

Uniform magnetic field: and

Angular momentum theorem

Larmor frequency

energy conservation

The magnetic moment rotates about the magnetic field vector, describing 
a cone around the axis of the applied field
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The Stern-Gerlach experiment

1 GHz with B = 0.1 T

A beam of silver atoms is passed through an
inhomogeneous magnetic field along z axis.
This field would interact with the magnetic
dipole of the atom and deflect it
In classical physics, a continuous
distribution, vertically orientated along z axis
was expected due to the random orientation
of the magnetic dipoles

Larmor frequency
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The Stern-Gerlach experiment

Wrong 
interpretation!
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Orbital angular momentum

The orbital state of the electron is described by its wavefunction
Owing to the invariance with respect to any rotation, the wavefunction
of the ground state level is a radial function such that

1s orbital (Hydrogen atom)

The orbital angular momentum can not explain the result observed by
Stern & Gerlach because the value of the orbital angular momentum is
none for the ground state level which means that no deflection should
be observed in the experiment



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM257

1924: Pauli postulated that the electron has a new
quantum degree of freedom (or quantum number) with two
possible values and with no classical equivalent

1925: Uhlenbeck and Goudsmit postulated
the existence of a new intrinsic property of
particles that behaved like an angular
momentum

Spin- ½ particle 
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1924: Pauli postulated that the electron has a new
quantum degree of freedom (or quantum number) with two
possible values and with no classical equivalent

1925: Uhlenbeck and Goudsmit postulated
the existence of a new intrinsic property of
particles that behaved like an angular
momentum

The existence of spin angular momentum is inferred from
experiments, such as the Stern–Gerlach experiment, in which
particles are observed to possess an angular momentum that
cannot be accounted for the orbital angular momentum alone

Spin- ½ particle 
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Spin angular momentum

The Stern-Gerlach apparatus allows to measure the observable Sz
that is the projection of the spin S along z axis

Two possible results
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2. 
Constructions of the Observables
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Three components for the spin

In contrast to orbital angular momentum, the spin DOES NOT
correspond to rotation around a geometric axis. It is an intrinsic
property of quantum particles, but we will se that the effects are angular
momentum-like
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Hilbert’s space describing the spin of the electron

Observable: Eigenvalues:

Minimalist assumption

Consider and the eigenvectors of

is a basis of

In this basis,

Construction of the operators
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Quiz 5

What do you expect after the second Stern-Gerlach apparatus?
1. One spot
2. Two spots
3. Does not make sense
4. I do not know
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Quiz 5

What do you expect after the second Stern-Gerlach apparatus?
1. One spot
2. Two spots
3. Does not make sense
4. I do not know
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Quiz 6

What do you expect after the second Stern-Gerlach apparatus?
1. One spot at the center
2. Two spots shifted along z-axis
3. Two spots shifted along x-axis
4. I do not know
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Quiz 6

What do you observe after the second Stern-Gerlach apparatus?
1. One spot at the center
2. Two spots shifted along z-axis
3. Two spots shifted along x-axis
4. I do not know
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(1) is an observable

In the basis

Construction of the operators
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(1) is an observable

In the basis

(2) As for the eigenvalues of are:

Construction of the operators
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(1) is an observable

In the basis

(2) As for the eigenvalues of are:

(3) For the state ,t measurement of produces two identical spots

Construction of the operators
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Consider the new basis with

In this new basis we have (for simplicity let us call it )

And,

Construction of the operators
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By convention and to match the experiments, we take:

Construction of the operators
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Pauli matrices

Pauli matrices for spin ½-particle

Note that these three observables do not commute

with
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Summary

Pauli matrices for electron spin description

! The spin can indeed be seen an additional angular momentum

Same commutations relationships than the orbital angular momentum

with
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Quiz 7

What do you observe after the third Stern-Gerlach apparatus?
1. One spot
2. Two spots
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Quiz 7

What do you observe after the third Stern-Gerlach apparatus?
1. One spot
2. Two spots
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The observable 

Spherical 
coordinates
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Measurement of

for a system prepared in
quantum state

Similar to Malus’s law for light 
polarization but here for the spin

The observable 
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3. 
Towards a complete description of the 

Stern-Gerlach experiment
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If (a) is in state and (b) then the state of the total quantum
system is

Consider a quantum system (a) represented by an Hilbert space with
basis

Consider a quantum system (b) represented by an Hilbert space with
basis

Tensor product of two Hilbert spaces

Tensor product

Tensor product vector space
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General expression of the state

Consider a quantum system (a) represented by an Hilbert space with
basis

Consider a quantum system (b) represented by an Hilbert space with
basis

Tensor product of two Hilbert spaces

Example: 2D quantum harmonic oscillator
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Consider an operator acting on Hilbert space

Consider an operator acting on Hilbert space

281

Tensor product

Tensor product of two operators

or
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Back to the Stern-Gerlach experiment

with

basis of

Linear superposition between
(a) a wavepacket associated to a magnetic state
and
(a) a wavepacket associated to a magnetic state
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Time evolution
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Time evolution
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Time evolution



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM286

Time evolution

with
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Entanglement
Consider the factorizable

state (no correlation)

Time-evolution of a 
wavepacket with 

Time-evolution of a 
wavepacket with 

After the interaction with the Stern-Gerlach apparatus, there exists a 
direct correlation between the position of the atom and its magnetic state

Entangled quantum state
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Measurement in quantum mechanics

Measurement

Time-reversible Time-irreversible

OR

Copenhagen 
interpretation

Measuring the position gives a direct measurement of the spin 
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Many worlds interpretation of quantum mechanics

The observer is included into the description of the state vector

The 3rd postulate (measurement) is not invoked anymore
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Many worlds interpretation of quantum mechanics
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Many worlds interpretation of quantum mechanics
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High resistance

Spintronic

Giant Magneto Resistance (1988) involves
small changes in magnetic fields creating
major differences in electrical resistance

Low resistance

In a magnetic material, the scattering of electrons is driven by the
direction of magnetization. The GMR arises because of the spin of the
electron that induces a magnetic moment

! Better read-out heads for pocket-size devices
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Spintronic
MRAM uses magnetic storage elements instead of electric used in
conventional RAM

Tunnel junctions are used to read the information stored in
Magnetoresistive Random Access Memory, typically a ”0” for zero point
magnetization state and “1” for antiparallel state
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Nuclear magnetic resonance
1944

1952

A RF signal induces a transition between spin states. This "spin
flip" places some of the spins in their higher energy state. If the RF
signal is then switched off, the relaxation of the spins back to the
lower state produces a RF signal at the resonant frequency
associated with the spin flip
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Nuclear magnetic imaging 2003

Chemical spectroscopy
Spectrum of ethanol CH3-CH2-OH (1952)

Nuclear magnetic resonance
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Section 8

General description of the angular momentum

296
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1. 
Orbital angular momentun
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Orbital angular momentum 

It is not possible to simultaneously measure the different cartesian
components of the orbital angular momentum operator
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And we also have

It is possible to simultaneously measure the norm of the components of
the observable

operator
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2. 
Algebraic theory of the angular 

momentum 

300
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Consider a rotation around the z-axis on a wave
function

Representation of a rotation in Hilbert’s space
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Consider a rotation around the z-axis

302

Representation of a rotation in Hilbert’s space

are the infinitesimal generators of the rotation group
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Invariance and commutation
Consider the following system with a rotational invariance
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Invariance and commutation

but

then

Consider the following system with a rotational invariance
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Invariance and angular momentum
Consider the following system with a rotational invariancefor any z and ⍶

! We usually consider

We can search a common basis to             as well as to one of the 
cartesian coordinates of 

This is true under small angle approximation

Rotational invariance
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Eigenvalues of J2, Jz

is the Hilbert space of J2 and Jz with eigenvalues
and

Let us assume the following eigenvalues
Bijective function
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Eigenvalues of J2, Jz
The two observables share the same eigenstates

j is called angular momentum quantum number. It must be integer or half-
integer j = 0, 1/2, 1, 3/2, 2, etc.

For a given value of j, m that is called the magnetic quantum number can 
only take on integer values between -j and +j i.e., m = -j, -j+1,…, j-1, j

Only discrete values of angular momentum j are allowed

Let us prove this by using the algebraic theory developed by E. Cartan



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM308

Operators J+ and J-
Consider the following operators (see the quantum harmonic oscillator)

We can also demonstrate

Not an observable

We also know the commutation relations

and
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Action of J+ and J-

?
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Action of J+ and J-

?

or
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Action of J+ and J-

?
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Action of J+ and J-

?

or
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Norm of 

with
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Norm of 

with
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What values for m and j?

iff

In summary

iff
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What values for m and j?

0

1

2

-2

-1

1 2
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What values for m and j?

0

1

2

-2

-1

1 2



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM318

What values for m and j?

0

1

2

-2

-1

1 2
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What values for m and j?

0

1

2

-2

-1

1 2
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What values for m and j?

0

1

2

-2

-1

1 2
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What values for m and j?

0

1
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-2

-1

1 2
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What values for m and j?

0
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-1

1 2
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What values for m and j?

0
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-1

1 2
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What values for m and j?

0

1

2

-2

-1

1 2
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What values for m and j?
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Eigenstates of
Consider the standard basis
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3. 
Application to the orbital angular momentum
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Operators in spherical coordinates
Using spherical coordinates we can write

Expressions for other coordinates
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Radial and angular functions

Note that the radial variable r is not involved in the differential equations
An eigenvector of {L2,Lz } is such as
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Eigenvalues of 

But integer
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But
is a first order linear differential operator ! unique solution

We can prove

Using a recursive relationship and using L+, we get 

Spherical harmonics
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Geometrical representation 
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Spherical harmonics

is a real function with z nodes in the interval

Along the parallels, we observe the
dependence with the azimuth angle
which allows to determine m

Along the meridians, the number of
nodes allows to determine l when
varying the polar angle
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Quiz 8

Find the spherical harmonic

+



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM335

Quiz 8

Find the spherical harmonic

+
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Quiz 9

Find the spherical harmonic

+
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Quiz 9

Find the spherical harmonic

+
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Section 9

The hydrogen atom

338
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Introduction

Substituting           into the Schrödinger’s equation, we getpositive integers

Spectrum with discrete lines (Rydberg, Balmer)

Planetary models (Perrin, Rutherford)
The classical physics predicts that the electron will fall onto the
nucleus because a moving and accelerated charge radiates

! Bohr: only certain orbits are allowed
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Bohr’s model 

Consider a circular trajectory

w/ the Bohr radius

w/ the fine-structure constant

Quantization of angular momentum

w/ 
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Bohr’s model 

The model perfectly predicts the different
energy levels but remains incomplete at the
microscopic level (quantization not justified)

Total energy

Photon energy associated to the transition
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The Hydrogen atom in quantum mechanics

with

Two particles under the Coulomb interaction: proton + electron 

As in classical mechanics, we can introduce the reduced mass to 
reduce the number of degrees of freedom (6 ! 3)

Schrodinger equation

Eigenstates 

The Coulomb potential is an example of what is known as a central
potential or radial potential, one that depends only on the distance r to
the origin
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Motion in a central potential

Consider a circular trajectory

w/ the Bohr radius

w/ the fine-structure constant

Quantization of angular momentum

w/ 

Consider the Laplacian expressed in spherical coordinates

Rotational Kinetic Energy

with
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Motion in a central potential

: Spherical harmonics

Complete set of commuting observables ! common basis
Rotational invariance
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The radial equation

Reduced radial wavefunction with

Radial equation 

with

3D! 1D Schrodinger equation 
But we get one equation for each value of l (e.g. multiple 1D problems)
This equation is independent of
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The radial equation

radial quantum number

Centrifugal
barrier
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2. 
Determination of the eigenstates of the 

hydrogen atom 

347
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The principal quantum number

Consider a circular trajectory

w/ the Bohr radius

w/ the fine-structure constant

Quantization of angular momentum

w/ 

States with the same                have the same energy 
! degenerate states  

We introduce the principal quantum number such as 
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The degeneracy of the level        i.e corresponding to the dimension of 
the vector subspace is  
Degeneracy enhanced by 4 when considering electron and proton spins

349

Energy levels of the Hydrogen atom

s-states

p-states
d-states

For a given value of the energy          we have 
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Eigenstates

The eigenstates are represented by the ket-vector  

The wavefunction are

with

is a real function with z nodes in

For the radial function

has nodes in the interval

it is possible to show
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The radial functions
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3. 
Atomic orbitals

352
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Representation of an atomic orbital

How can we represent the complex wavefunction ?

with for instance

We represent isodensity surfaces defined

The constant       is a real number and choose such as

! This gives the probability      to find the electron within the surface

Then, we represent the phase and the complex 
wavefunction by using a color code
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s-like atomic orbitals

isodensity surface = spheres

+
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p-like atomic orbitals

Note:
Reals orbitals, 2px, 

2py, 2pz used in 
chemistry

Linear Combination of Atomics Orbitals
LCAO:

+
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Quiz 10

?

+
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Quiz 10

?

+
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Quiz 11

?

+
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Quiz 11

?

+
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Section 11

Variationel methods

360

Hydrogen atomic orbitals

s-like

p-like

d-like

+
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Hydrogen atomic orbitals
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4. 
Time evolution

362
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Evolution of an eigenstate

If then

Time independent (stationary state)

For

Rotation
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Time evolution of I2,1,1>

If then

Time independent (stationary state)

For

Rotation

For instance
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WKB = Wentzel-Kramers-Brillouin is a way to semiclassically
approximate wave functions for slowly varying V(x)

We write a general wave function             wh where A is real 
and S(x) is a complex function

Time evolution of a linear superposition

Substituting           into the Schrödinger’s equation, we get

Now expand S(x) in powers of    such that
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WKB = Wentzel-Kramers-Brillouin is a way to semiclassically
approximate wave functions for slowly varying V(x)

We write a general wave function             wh where A is real 
and S(x) is a complex function

Time evolution of a linear superposition

Substituting           into the Schrödinger’s equation, we get

Now expand S(x) in powers of    such that

Rotation
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WKB = Wentzel-Kramers-Brillouin is a way to semiclassically
approximate wave functions for slowly varying V(x)

We write a general wave function             wh where A is real 
and S(x) is a complex function

Time evolution of a linear superposition

Substituting           into the Schrödinger’s equation, we get

Now expand S(x) in powers of    such that

Rotation
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Section 10

Indistinguishable particles

368

?
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Two particles are indistinguishable or identical if their physical
properties (mass, charge, etc.) are all identical

Example: 2 electrons or 2 protons

Identical particles

In classical physics, it is possible to track the trajectories of two
identical particles. These particles are discernible

e.g. the two physical processes below are perfectly distinguishable
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In quantum physics, the concept of trajectory does not exist anymore

Identical particles

After 
collision

Before
collision

The question “which particle has been detected?” does not make
sense in quantum physics since the particles are not discernable
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How to describe the system?

or

or

What representation to describe the quantum system?

Orbital
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Exchange particles

is a permutation operator that acts by switching the labels on any
two identical particles described by the joint position quantum
state

Two particles w/o spin

Two particles w/ spin

is a Hermitian and unitary operator

with eigenvalues of

Fock states
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Exchange particles

is an exchange operator between the two particles a and b

Two particles w/o spin

Two particles w/ spin

Symmetric
Antisymmetric states

Symmetric states
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The two particles are indistinguishable (invariance under the exchange
of 2 particles as the rotational invariance seen in section 8)

Time evolution

and

Consider

A symmetric (antisymmetric) state remains symmetric (antisymmetric).
However, quantum physics allows principle of superposition. Can we
put the system in a linear superposition of symmetric and
antisymmetric states? Another postulate is required at this stage.
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It is a postulate of symmetrization introduced by Pauli

Pauli exclusion principle

All particles in Nature are Bosons or Fermions

Bosons: The state vector is always symmetric under particle exchange

Fermions: The state vector is always antisymmetric under particle
exchange

Read also P. A. M. Dirac, « On the theory of quantum mechanics »,
Proceedings on the Royal Society A, Vol. 112, pp. 661, 1926
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Spin-statistic theorem

The spin–statistic theorem relates the intrinsic spin of a particle
(angular momentum not due to the orbital motion) to the particle
statistics it obeys

The demonstration of this theorem requires the quantum field theory
that is beyond the scope of this lecture. In our case, use it as a
postulate

! Particles with integer spin (photons, phonons, mesons pi, etc.) can
only be found in symmetric states hence these particles are
bosons.
Bose-Einstein statistics

! Particles with half-integer spin (electrons, protons, neutrons, etc.)
can only be found in antisymmetric states – these particles are
fermions.
Fermi-Dirac statistics
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Composite particles
The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

! Proton or neutron (3 quarks): s=1/2 [Fermion]

! Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: can you guess whether these two isotopes of sodium are
fermions or bosons?

?
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Composite particles

Fermion
Boson

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

! Proton or neutron (3 quarks): s=1/2 [Fermion]

! Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: can you guess whether these two isotopes of sodium are
fermions or bosons?

Z protons
Z electrons

A-Z neutrons
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Composite particles
The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

! Proton or neutron (3 quarks): s=1/2 [Fermion]

! Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: And assuming the two nuclei?

Z protons
Z electrons

A-Z neutrons
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Composite particles

Boson
Fermion

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

! Proton or neutron (3 quarks): s=1/2 [Fermion]

! Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: And considering the two nuclei?

Z protons
Z electrons

A-Z neutrons
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Composite particles
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2 identical bosons with spin 0
Ground state level (E=2E1)

First excited state (E=E1+E2)

Dimension of the Hilbert space associated to the energy E2+E1 is
reduced from 2 to 1 (identical particles)
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System with two spin-½ 

One electron and one proton in the Hydrogen atom

Two protons in the Hydrogen molecule

Any virtual system with two spin-1/2 (two state level systems) ! Photon
pair (clockwise/anti-clockwise circularly and linearly polarized)
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Orbital

dim=8

dim=4

2 particles with spin-½

Coupling two particles with spin ½ means that the total angular
momentum is integer and only equals s=0 or s=1 (not demonstrated in
this course)

spin 0 
(singlet )            

spin 1 
(triplet )            
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2 identical fermions with spin-½

Orbital spin

Ground state level (E=2E1)

spin (singlet state)
(antisymmetric)              

Orbital
(symmetric)

dim=4

dim=1
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Orbital

First excited state level (E=E1+E2)

spin (triplet state)
symmetric              

dim=8

dim=4

2 identical fermions with spin-½
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Generalization to N particles
Many-body interaction has to be taken into account in the Hamiltonian

Coulomb interaction 
between electrons

Many situations in physics and chemistry involve N identical particles
like atoms with Z electrons

Physics of semiconductors devices also requires the inclusion of many
body interaction
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Generalization to N particles
We do not consider the interaction between particles

Eigenvector of

Eigenvalues of

We also assume that the
eigenstates and eigenvalues of one
particle are known
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System of N bosons

Consider the given configuration

Using the postulate of symmetrization, the state vector becomes

and C is a normalization constant

Consider N! p-permutations of {1,2,..,N} as well as the corresponding 
operators Pp acting in the Hilbert space

! The state vector must be invariant whatever the permutations
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System of N bosons

N bosons can be stacked in the same state ! LASER
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We write a general wave function             wh where A is real 
and S(x) is a complex function

System of N fermions

Substituting           into the Schrödinger’s equation, we get

Now expand S(x) in powers of    such that

Using anti-symmetrization, we get  the following state vector

Pauli exclusion principle :

Slater 
determinant

Signature of the 
Permutation

! vanishes when two columns are identical e.g two or more
identical fermions cannot occupy the same state (Pauli)
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System of N fermions with s=1/2
Useful to explain the construction of the atomic and molecular orbitals, 
the energy bands in solids, and of course the stability of matter
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In an atom or ion, electrons fill atomic orbitals of the lowest
available energy levels before occupying higher levels leading to the
most stable electron configuration possible wavefunctions

Aufbau principle
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Periodic table

Transition metals
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Section 10

EPR paradox and Bell inequality 

395
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The EPR argument

In 1935, EPR said the quantum theory is not complete pointing out the
existence of possible hidden variables in the formalism
Einstein discovered that the formalism of quantum mechanics contains
the existence of particular states named entangled states

“If, without in any way disturbing a system, we can predict with
certainty the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity”
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The EPR argument

In 1935, Niels Bohr answered EPR by saying that the quantum theory is
complete i.e. there are no hidden variables

In 1964, John Bells introduced an inequality that has further led to the
experimental evidence that quantum mechanics is indeed complete



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM398

Entangled state

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents; that is to say,
they are not individual particles but are an inseparable whole

Let us consider two vectors then

is a vector of the total Hilbert
space 

However the reverse statement is wrong i.e. there exists non separable
states of the Hilbert Space that can not be expressed as

Such a general state Ψ which cannot be written in the form of a tensor 
product is called an entangled state
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Quiz 12

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents.
A non separable state is entangled

Find below which of the following quantum states are entangled?
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Quiz 12

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents.
A non separable state is entangled

Find below which of the following quantum states are entangled?
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Photon polarization

The polarization of a single photon is described in an Hilbert space of
dimension 2

(α, β) real coefficients: linear polarizations
(α, β) complex coefficients: elliptic and circular polarizations

An individual photon can be described as having right or left
circular polarization, or a superposition of the two. Equivalently, a
photon can be described as having horizontal or vertical linear
polarization, or a superposition of the two

! It is a two-state quantum system called quantum bit or qbit
Applications: quantum cryptography & quantum information
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Measurement on an entangled state

Consider the following entangled quantum configuration with two
photons linearly polarized

The Hilbert space of dimension 4

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Measurement on an entangled state

P1 transmitted 
Result (eigenvalue): ε1=+1

Eigenstates: I+θ1> 

P2 transmitted 
Result (eigenvalue): ε2=+1

Eigenstates: I+θ2> 

P1 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ1> 

P2 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ2> 

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Measurement on an entangled state

Initial entangled quantum state
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Measurement on an entangled state

The sum of the joint probabilities is 1

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Measurement on an entangled state

What are the single probabilities for separated results?

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB

Randomness results not dependent on the polarizer angles. However
those obtained by Alice and Bob together are strongly correlated
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Measurement on an entangled state

P1 transmitted 
Result (eigenvalue): ε1=+1

Eigenstates: I+θ1> 

P2 transmitted 
Result (eigenvalue): ε2=+1

Eigenstates: I+θ2> 

P1 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ1> 

P2 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ2> 

For each pair of particles, Alice and Bob calculate the product of the
results ε1 = ±1 and ε2 = ±1 and obtained a number ε1ε2 = ±1

! ε1ε2 = +1 results are correlated; ε1ε2 = -1 results are not correlated 

Repeating the measurements multiple times, Alice and Bob can obtain
the correlation function

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Correlation on an entangled states?

Quiz 13
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Quiz 13

Correlation on an entangled states

When θ1=θ2 Alice and Bob will always find the same results (++) or (--)
When θ2=θ1+90° Alice and Bob will always find opposite results (+-) or (-+)
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Measurement on an entangled state
Now consider the case for which θ1=θ Alice has measured +1
What is the state of the system after her measurement but before Bob’s
measurement?

Third postulate: The quantum state is obtained by projection. However if
Bob has not yet performed the measurement, we replace the
corresponding projector by the identity

Proof (not trivial)

If Alice measure , the state received by Bob is

Now, you should start wondering about metaphysical questions…
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Bell inequality

How to explain quantum correlations? Following the EPR argument,
John Bell assumed that there exists hidden parameters λ
that must determine the outcome of Alice and Bob measurements

J.S. Bell, Rev. Mod. Phys. 38, 447 (1966) 

Statistic distribution 
(normalized)

Two photons 
faraway from 

each otherTransmitted: +1
Reflected: -1

Transmitted: +1
Reflected: -1

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Bell inequality

Then John Bell introduced the following quantity (averaging on ρ(λ) )

For any hidden variable theory, Bell inequality tells us 

J.S. Bell, Rev. Mod. Phys. 38, 447 (1966) 

Two photons 
faraway from 

each otherTransmitted: +1
Reflected: -1

Transmitted: +1
Reflected: -1

P1 P2

Orientation
θ1 or θ’1

Orientation
θ2 or θ’2

ALICE BOB
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Violation of Bell inequality

Entangled state

From quantum mechanics, we 
know the correlation function

Violation of Bell inequality!!
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Bell inequality

How can we explain this result with such “simple assumptions”?

Bell assumptions are always verified in classical physics but there is
no weakness behind them

Two photons 
faraway from 

each other

1. Local model
2. The hidden properties are hold by the each particles via the variable λ
(Bohr: “This statement is not true in quantum mechanics”)

Transmitted: +1
Reflected: -1

Transmitted: +1
Reflected: -1

P1 P2

Orientation
θ1 or θ’1

Orientation
θ2 or θ’2

ALICE BOB
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Aspect experiments (1981-82)

A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) 
A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982) 

C1, C2 are optical switches redirecting photons towards polarizers with
angles (θ1,θ’1) and (θ2,θ’2). Commutation was faster (10 ns) than
propagation of light between polarizers (40 ns) and even faster than
time of flight of photons between the source and each switch (20 ns)
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Aspect experiments (1981-82)

Sexp= 2.697 ± 0.015

Result in a perfect agreement with quantum theory
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Others experiments

! All results are in a perfect agreement with quantum theory
! Closing the door on Einstein and Bohr’s quantum debate!

[1] M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015) 
[2] L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015) 
[3] B. Hensen et al., Nature 526, 682 (2015)
See also, https://physics.aps.org/articles/v8/123

Others ultimate experiments have been done in 2015
Entangled photon pair, L = 58 m in Vienna, Austria Vienne [1]  
Entangled photon pair, L = 185 m in Boulder, USA [2]
Entangled spin pair, L = 1.3 km in Delft, The Netherlands [3] 

Aspect experiments were pioneered and showed (fairly) conclusively
that quantum physics is non-local, and that the universe is much
stranger than it appears, or than Einstein would've liked it to be
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Consequences of the violation of Bell inequality

This conclusively shows that either the realism and/or locality
assumptions must be voided, i.e., there is no deeper local realist theory
lurking behind quantum mechanics. Most physicists have chosen to
reject realism (i.e., that unobserved quantities have definite values),
though some still favor nonlocal realist theories

In any case, entanglement allows us to introduce and manipulate
nonlocal correlations, a concept alien to most conventional classical
physics. It is this property that enables many of the novel uses of
quantum information

Multiple applications: quantum cryptography, quantum key-distribution
(QKD), quantum teleportation, quantum computation ,
See supplementary information IV for further readings



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM419

Quantum teleportation

Science, Vol. 356, 6343, pp. 1140-1144, 2017
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Section 12

Quantization of Electromagnetic Field

420

It is recommended to also read the supplementary information V
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Multiple applications at the nanoscales

421

Quantum dotsMicropillar

Microdisk 2D photonic crystal

The quantization of the field is required to understand the light-matter 
interaction at the nanoscale
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Maxwell equations

In free-space, recall Maxwell equations (with J=0 and ρ=0)

These equations describe classical electromagnetic waves. 
But how do we get to a quantum theory of electromagnetic radiation? 
! We can find the classical Hamiltonian for electromagnetic waves and 
quantize it

Consider a perfect cubic cavity of volume V = L3 as L → +∞
We want to find the electromagnetic modes in the box and quantize them 
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Modes are written in terms of the fields (using separation of variables)

Normalization conditions

Energy per mode

with

and

Electromagnetic modes & spatial profiles
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Electromagnetic modes & spatial profiles

Plugging the fields into Maxwell’s equations

The solutions for this set of equations are oscillatory with frequency

and and will be 90°out of phase

Energy per mode becomes
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Analogy with the quantum harmonic oscillator

The analogy with the single harmonic oscillator (SHO) is not accidental:
Electromagnetic radiation is coupled oscillation of the E and B fields

Electromagnetic field quantization
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Hamiltonian for single-mode quantum radiation

Let us now introduce both creation and annihilation operators 

Following the same procedure as the one use for the quantum
harmonic oscillator, we show that

Eigenstates with n=0,1,2,… corresponds to the number of
photons into the mode

Even there are no photons in the mode, there is still a finite energy

(i.e. vacuum) of energy
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Multimode Hamiltonian
Since there are many modes in free space, the total Hamiltonian can
be written as the sum of the individual modes. For convenience we
label each mode (k,λ) with j

Eigenstates

Note that different modes do not interact with each other, i.e., each
mode is independent

with

And we do still have creation / annihilation operators (not Hermitian)
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The vacuum state
Recall that in the quantum harmonic oscillator, the ground state (n = 0), 
is such that ⟨x⟩ = ⟨p⟩ = 0 but ∆x ∆p = ħ/2 . In quantum electrodynamics, 
it can be shown that for the vacuum state of each mode, ⟨e⟩ = ⟨h⟩ = 0 

There are zero-point fluctuations of the fields in vacuum which
contribute to the finite zero-point energy and which can be thought to
induce spontaneous emission

Total energy of the vacuum

However, the energy difference with excited states, which is what is
typically observed, is finite
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The vacuum state

The vacuum is the minimum dispersion state that is to say a state in
which the fluctuations have the minimum values compatible with
Heisenberg relationship

Explain the decay of an atom down to ground state by spontaneous
emission

Affect the positions of the energy levels of the atom (Lamb shift)

The vacuum is responsible for remarkable features of quantum physics

The Casimir effect that is to say the attraction between two metallic
plates close to each other
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The Casimir effect
H. Casimir first predicted in 1948 that when two mirrors face each
other in vacuum, fluctuations in the vacuum exert radiation pressure
on them

Since the space between two plates is different from the space outside,
the vacuum fluctuations are also different in the two regions. The
fluctuations exert different forces on the plates from inside and outside,
resulting in a net pressure
Casimir forces set fundamental limits on the performance and the
possible density of devices that can be optimized on a single chip

Casimir force

d

AA
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The Casimir effect

Science, Vol. 291 no. 5510, pp. 1941-1944, 2001 

At the nanoscale, the Casimir force can produce a collapse of movable
element to the substrate or the collapse of neighboring components
during nanoscale device operation
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Electron-photon interaction 
Alongside any quantum electronic system (hydrogen atom, potential well,
etc.), there is also a quantum electromagnetic system. We can consider
the composite quantum of an electron in some potential V(r) with the
omnipresent electromagnetic field as the sum of the individual
Hamiltonians with an interaction Hamiltonian

Eigenstates are linear combinations of |ψi,{n}⟩

with

leading to
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Electron-photon interaction
The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

PhotonsWavefunction
Suppose states |1⟩=|ψ1,{n1}⟩ and |2⟩=|ψ2,{n2}⟩ where |{n1}⟩=|n1,...nk,...⟩ and
|{n2}⟩=|n1,...nk −1,...⟩ with energy Eψ1−Eψ2=ħωk

|1⟩

|2⟩

Transition I2> to I1> takes place while increasing the number of photons
in mode k by 1 (a photon is emitted)
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The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

PhotonsWavefunction
Suppose states |1⟩=|ψ1,{n1}⟩ and |2⟩=|ψ2,{n2}⟩ where |{n1}⟩=|n1,...nk,...⟩ and
|{n2}⟩=|n1,...nk −1,...⟩ with energy Eψ2−Eψ1=ħωk

|1⟩

|2⟩

Transition I1> to I2> takes place while decreasing the number of photons
in mode k by 1 (a photon is absorbed)

Electron-photon interaction
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The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

PhotonsWavefunction

Rate of absorption

Rate of transitions

And spontaneous emission is included

Electron-photon interaction
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With eigenstates such as

Rotating wave approximation: Suppose the mode frequency is such
that ħωj=Ea−Eb with Ea>Eb. Then we expect photon absorption to
dominate the coupling from state b to a (p term) and emission to
dominate the coupling from state a to b (p∗ term)

Two-state coupled to a single mode

Suppose a two-level electronic system coupled to only a single photon
mode j (an example is an atom in a microscopic waveguide cavity)
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i.e.

with

The interaction Hamiltonian only couples states |a,n⟩ and |b,n+1⟩ to
each other. So let us consider the action of the Hamiltonian just on the
basis |a, n⟩ and |b, n+1⟩

Two-state coupled to a single mode

Eigenstates

If the system starts out in, say, |a, n⟩, the state will Rabi oscillate back
and forth between |b, n+1⟩, continuously emitting and reabsorbing a
single photon
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Rabi oscillations
Single localized emitter, initially in its excited state and resonantly
coupled to a single empty mode of a lossless micro-cavity
No dissipation (e.g. perfect micro-cavity)

438

J. M Gerard, Single Quantum Dots, Topics Appl. Phys. 90, pp. 269–315 (2003) 
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Two-state coupled to a continuum
Suppose we have a two-level electronic system with states |a⟩ and |b⟩ in 
free space. The total Hamiltonian becomes (dropping the vacuum energy 
which just adds a global constant) 

The true eigenstates of H are complicated, so we write the state of the 
system in the basis of |a, {n}⟩ and |b, {n}⟩. Because these are not energy 
eigenstates anymore, we must allow their coefficients to be time-
dependent

Suppose the system starts in the state |a,{0}⟩ (i.e., in the upper
electronic state with vacuum fluctuations). An excited state is not a
stationary state so what is its time evolution?
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Two-state coupled to a continuum
Suppose we have a two-level electronic system with states |a⟩ and |b⟩ in 
free space. The total Hamiltonian becomes (dropping the vacuum energy 
which just adds a global constant) 

Suppose the system starts in the state |a,{0}⟩ (i.e., in the upper
electronic state with vacuum fluctuations). An excited state is not a
stationary state so what is its time evolution?

Since the pj interaction only couples |a,{0}⟩ to states |b,{1j}⟩ (product
state of |b⟩ with one photon in mode j), we only need to consider these
states in our expansion
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Substituting into the time-dependent Schrödinger equation, we obtain

Two-state coupled to a continuum

Working out the results of the time-dependent Schrödinger equation 
and then projecting onto |a, {0}⟩ and |b, {1j}⟩, we get 

With the frequency detuning
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Density of photons

Two-state coupled to a continuum

We can integrate the second equation from t = 0 to t, recalling our initial 
condition cb,{1j}= 0, and then substitute in the first equation to obtain 

Summation on a continuous 
range of photons mode j

The above equation assumes that ca,{0} changes slowly with time, such 
that ca,{0}(t′) ≈ ca,{0}(t) 
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What is the long time limit of this? 

leading to

Two-state coupled to a continuum

The integration of this very last equation allows to retrieve the so-called 
Fermi-Golden rule
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i.e.

Two-state coupled to a continuum

The probability of the system remaining in its initially excited electronic 
state without emitting a photon is given by 

which is the so-called Fermi golden rule

In other words, the system irreversibly transitions away from its initial
excited state by emitting a photon; substituting in values for pj and the
photon DOS, we obtain exactly the spontaneous emission rate predicted
by the Einstein relation and previously calculated semi-classically
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Section 13

The WKB Approximation

445

Further material on perturbation theories is available in the supplementary 
information documents II and III
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WKB=Wentzel-Kramers-Brillouin is a way to semi-classically
approximate wave functions for slowly varying V(x)

We write a general wave function             wh where A is real 
and S(x) is a complex function

WKB approximation

Substituting           into the Schrödinger’s equation, we get

Now expand S(x) in powers of    such that
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Using the series expansion of S(x) we find 

Every term of the series in     must vanish, i.e., 

WKB approximation
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We can solve the equations sequentially

Substituting

where

WKB approximation

and absorbing integration constants in Ain
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Let

WKB approximation

which coincides with the exact solution for the harmonic oscillator! 
However, most of the time the WKB is not so exact….

with classical tuning point such 

for forthis implies
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WKB approximation is valid when V(x) changes so slowly that the local 
momentum is constant over a few wavelengths 

WKB approximation breaks down near the classical turning points
because k(x) ! 0 and λ ! ∞ (connections formula required)

WKB approximation 

WKB is particularly useful for estimating tunneling rates and bound state 
energies. Since bound states imply standing waves, we require that 

where are the classical turning points,    is an integer, and       is
an additional phase accounting for penetration of wave function into 
barrier 
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In classically forbidden regions for which                       we have

where

WKB approximation 

In practice this equation is very helpful for estimating tunneling in real 
physical systems, including semiconductor devices 

We can estimate the tunneling probability through a classically
forbidden region bounded by using
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Comments and remarks regarding this course can be directly 
addressed to Prof. F. Grillot at fgrillot@seas.ucla.edu
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