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Syllabus

Class Times and Location: Monday & Wednesday 8-10 AM (Boelter 9436)

Instructor: Prof. F. Grillot

email: fgrillot@seas.ucla.edu
Office Hours: Tuesday & Thursday 10-11 AM (66-144 Engr. IV.)

Course Website: https://leeweb.ee.ucla.edu

Please make sure your email is entered on the eeweb website in order to
receive course email

Midterm: Tuesday November 22, [open book], Wednesday, November 22,
2017, 11AM-12:50PM

Final: Oral presentation based on a research paper, (December)
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Syllabus

Grading policy: HW (19%),
Midterm (40%) + Finale Presentation (40%),

Survey (1%)

There will be 4 HWs assigned, typically due every 2-3 weeks in class.
Instructor reserves the right to use his judgment rather than strict

formulae when determining final grades.

Main Topics (tentative)
Postulates, Schrodinger equation, Fourier transform, Ehrenfest’s

theorem, Hilbert Space, Observable, Commutation, Infinite well, Bound
and Scattering States, Finite Well, Asymmetric double well potential,
Tunneling effect, Chemical bond, Stability of Matter, Wave-packet,
Quantum harmonic oscillator, Photon polarization, Stern and Gerlach

experiment,...
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Syllabus

Main Topics (continued)
Angular momentum and spin, Bell’s theorem, Entanglement,

Perturbation theory, Central force problem, Hydrogen atom, Fermi
golden rule, Field quantization, Fermions & bosons, indiscernibility,
Kronig-Penney’s model, Nonlinear chaotic dynamics in quantum

systems.

The exact choice and order of coverage may be adjusted or enhanced
during the course

The course will also give various applications of quantum mechanics in
our daily life

Telecommunications (Laser), Microelectronics (Nanotransistor)
Medicine (Nuclear Magnetic Resonance)

Microscopy (STM)

Quantum cryptography

Astrophysics (oscillation of nucleons)

Spintronics (Magnetic Hard Drives, RAMs)
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Resources

I do not plan to follow a specific textbook. The lectures will present
complementary viewpoints and topics. However the following
references can be considered to grab more information.

1] D. J. Griffiths, Introduction to Quantum Mechanics,

2] R. Liboff, Introductory Quantum Mechanics

3] P. L. Hagelstein, S. D. Senturia, and T. P. Orlando, Introductory
Applied Quantum & Statistical Mechanics

[4] R. P. Feynman, The Feynman Lectures on Physics, Volume Ill:
Quantum Mechanics

[5] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics

[6] J. J. Sakurai, Modern Quantum Mechanics
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Motivations

Why do we teach quantum mechanics?

A conceptual revolution: a particle can be a wave and a corpuscle
(wave-particle duality) !

Quantum mechanics unveils a fundamental theory in physics as
the relativity does too

Quantum mechanics fundamentally challenges the rules of all
logic e.g. position, measurement, is that real world?

A technological revolution, more than 50% of the gross domestic
product is driven by quantum mechanics related technologies
(electronics, optoelectronics, nuclear science, lasers, medicine,...)
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Directions

Starting point
Interferences with particles of matter, tunneling effect
Thought experiments

Mathematical tools
Probability distribution
Fourier transform
Linear algebra

Outcomes
Explain the stability of matter, the chemical bond, etc.

Show various examples of applications of quantum mechanics in
our daily life
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Section 1
Wave or corpuscle?

The free quantum particle
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1.

From Lord Kelvin’s clouds to

Louis de Broglie’s waves

Lord Kelvin (1824-1907) Louis de Broglie (1892-1987)




Lord Kelvin’s clouds

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds”
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What are the clouds?
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Lord Kelvin’s clouds

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds’

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments
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Lord Kelvin’s clouds

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds’

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

- Theory of the relativity without concept of absolute time
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Lord Kelvin’s clouds

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds’

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

-> theory of the relativity without concept of absolute time
2. The black body radiation effect known as the ultraviolet catastrophe
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Lord Kelvin’s clouds

On Friday, April 27, 1900, the British physicist Lord Kelvin said: “The
beauty and clearness of the dynamical theory, which asserts heat and
light to be modes of motion, is at present obscured by two clouds’

1. The inability to detect the luminous ether, specifically the failure of
the Michelson-Morley experiments

-> theory of the relativity without concept of absolute time

2. The black body radiation effect known as the ultraviolet catastrophe
- quantum mechanics without concept of universal determinism
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Blackbody radiation

Classical physics can be used to describe the intensity of blackbody
radiation as a function of frequency for a fixed temperature. This is the
so-called Rayleigh-Jeans ’s law!

UV VISIBLE INFRARED

. The equation works for Ilow
I .(\T) = )\if kT| frequencies, but totally diverges
for high frequencies

Classical theory (5000 K)

5000 K

- ultraviolet catastrophe

3

QK
/ / \\ Planck’s law
27 1 3000 K T

0 ]/l l l\lgl_sl IPlanck()‘aT) — 27ThC2

Spectral radiance (kW - sr™1- m~2. nm™1)
o
1

0 0.5 1 15 2 2.5
Wavelength (um)

\°
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Blackbody radiation

Blackbody radiation is the thermal electromagnetic
radiation within or surrounding a body in thermodynamic
equilibrium with its environment, or emitted by a black

body that is an idealized object absorbing all frequencies
(e.g. hohlraum in German)

Human body Surface of the sun
s B e
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Planck’s postulate (1900)

The Planck’s postulate stands that the energies of the oscillations of
electrons which give rise to the radiation must be proportional to

integral multiples of the frequency % 1918
AFE =nhy =nhw W= 2wV
Planck’s constant Modified Planck’s constant
h
h~6.63 10734Js ho=_-~1.0510">"s
-

The postulate was introduced in his derivation of his law of black (D
body radiation in 1900. Planck was unable to justify this \(_
assumption based on classical physics; he considered

quantization as being purely a mathematical trick!
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Albert Einstein (1905)

Assuming a light of pulsation ® and momentum k, the quantum of
particle named « photon* » by Lewis in 1926 holds an energy and
impulsion defined such as:

E = hw p =Tk k| = —

photon* = Lichtquantum in German

Einstein introduces the concept of light quantization

Is the photon granularity in contradiction with the standard wave
equation which should be continuous (Maxwell)?

How to understand the duality nature of Light? (e.g. Light has both
properties of wave and particle at the same time).

Does the duality still exist for particles of matter (electrons, etc.)?
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Louis de Broglie (1923)

With every particle of matter with mass m and velocity v, a real wave
must be associated, related to the momentum by the equation

In wavelength, k — p
h
27T 2mh
P St N R or even
k p

“The fact that, following Einstein's introduction of photons in light
waves, one knew that light contains particles which are concentrations
of energy incorporated into the wave, suggests that all particles, like the
electron, must be transported by a wave into which it is incorporated...”

“My essential idea was to extend to all particles the coexistence of
waves and particles discovered by Einstein in 1905 in the case of light

and photons”
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2.

Waves of matter and interferences

Electron scattering, 1927

Davisson & Germer George Thomson
TELEEE?'K‘
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Young’s double slit experiments (1801)

The original double-slit experiment in 1801 (well before quantum
mechanics). Young thought to have demonstrated that the wave theory

of light was correct

Single-slit pattern

x A

Double-slit pattern

Single slit : diffraction pattern
Double slit : diffraction pattern and interference fringes

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270 Ll
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Double slit experiment with electrons

Electrons are accelerated to 50 kV, with a speed of about 120,000 km/s
e.g. 0.4 X c (~ 10 electrons per second)

’

Detector

9\ —
AP

Electron biprism

HITACHI

Similar to Fresnel’s
biprism experiment

Although electrons are sent one by one, interference fringes could be
observed. These interference fringes are formed only when electron
waves pass through on both sides of the electron biprism at the same

time but nothing other than this

Applied Quantum Mechanics, F. Grillot, EE270
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Double slit experiment with electrons

At the beginning, bright spots begin
to appear here and there at random
positions. Electrons are detected

one by one as punctual particles

The electron impact point (x,y)
looks somewhat random ??

(X212)

. Two electrons identically prepared with
the same initial conditions show

however different impact points
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Double slit experiment with electrons

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270




Double slit experiment with electrons

Number of electrons accumulated: (a) 8; (b) 270; (c) 2,000; (d) 16,000.
About 30 minutes is needed to reach stage (d)
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The wave function

First postulate: The state of a quantum mechanical system is completely
specified by a wavefunction

Qp(f’, t) that depends on the spatial coordinates 77 = (ZB, Yy, Z)

The wavefunction or state function has the important property that is the
probability that the particle lies in a volume element located at 7 and at

d>P = |y (7, t)|° &3

time t

The wavefunction must satisfy certain mathematical conditions because
of this probabilistic interpretation

10(7:’, t) probability amplitude /|¢(f’7 t)|2 d3’r — 1

— P i )
|¢(T, t) | probabilty density Normed function

éf:';ijlppAnls




Probabilistic interpretation

Assume N particles identically prepared in the same quantum state

o (, t)[2

Y(x,t) wp ‘/\/\}n\/h\~

For each particle, we measure the position with a detector having a spatial
resolution 6x, then we build-up an histogram of the results
: : : 2
It is possible to retrieve | (x,t)] ox
with a good precision if and only if N >> 1
n;: number of atoms detected in the it channel &m ‘Lﬂh@_\_ e
_ _ Applied Quantum Mechanics, F. Grillot, EE270 W
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Mean value and root mean square

(. t)[2

Mean (expectation) value

(@ = | [ (a, )| da

A& J
. i

dP(2)

Variance Az? = (z2) — ((z))?

with (z2) = /:132'|¢(:13,t)|-2 dx

|\ J
i

dP\ @)

Standard deviation >
or dispersion Az =VAz
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Summary of the 1st postulate

The wave function contains all the information of the system e.g. there is
nothing else in the quantum formalism that would allow to know, before
doing a measurement where the particle will be detected

The probabilism character and randomness behavior does not result
from a lack of knowledge of the initial conditions but is inherently
included in the quantum formalism

No hidden variables, “God does not play dice with the Universe”
(Einstein)

Experiment and theoretical proofs, Bell’s theorem
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Superposition principle
The wavefunction is a complex-valued probability amplitude

If ¥/ and ¥/, are wavefunctions with laws of probabilityP,= | v, |* and

P2:|‘//2|2
Y o Y1+ Yo
then,

is also a possible wave function with the law of probability

P=|]? x Pi+ P>+ i + h1tbh

\ J
Y

Interferences

Superposition principle is a
prerequisite for a structure of a
vector space

L

.4 4 |

Applied Quantum Mechanics, F. Grillot, EE270
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3.
Schrodinger’s equation

(free particle)

% 1933




What equation for this wave?

Maxwell equations (vacuum)

V-E=0, V-B=0
O(E\_[R2VxB
oo\ B \ —VxE

Applied Quantum Mechanics, F. Grillot, EE270
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What equation for this wave?

Maxwell equations (vacuum)

o

(’?,)—( éﬁxé) => EZF(QP)

F(y)s a function of W and its partial derivatives with respect to
the spatial variables (x,y,z)

Solutions: plane waves ) = g ot (k. T—wt)
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What equation for this wave?

Let us use the following dispersion relations

The frequency and the wavevector W <——

The energy and the momentum B —— 17

k

And the link between wave and corpuscle is give by F/ — hw ﬁ — TLE

Light Matter

p2

Corpuscle E=cp E=—
2m

XhT Einstein |

| ll h k2
Wave i = w = %
de Broglie

Applied Quantum Mechanics, F. Grillot, EE270

TELEEDM
aris
4 i |

N2 1P PARIS




What equation for this wave?

Maxwell equations (vacuum)

§-E=0,6-§=O a¢_
N | S =FW)

F(y) is a function of ¥ and its partial derivatives with respect to
the spatial variables (x,y,z)

Solutions: plane waves ) = g ot (k. T—wt)
\V/ (eiE'F> = ik ei];?? TLk’Q

Hint: . . and W — ——— F(w) ?
A ez’k.ff’) — —k2 eik.f,:* 2m
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What equation for this wave?

Maxwell equations (vacuum) What we want:

o

(é)_( éﬁxé) :> EZF(QP)

F(y) is a function of ¥ and its partial derivatives with respect to
the spatial variables (x,y,z)

Solutions: plane waves ) = g ot (k. T—wt)

Finally we get,
)
F(y) = - A
m
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Second postulate

The wave function or state function of a system evolves in time
according to the time-dependent Schrodinger equation

B
4
B
|
e
|
|

|
I'l '
b

Free particle without interaction

De Broglie’s waves are solutions of
Schrodinger equation




Quiz n°1

By integrating of the Schrodinger equation

0 =
1h— ¢ DAY
ot  2m
What do you get?
1. ¢(z,t) as a function of ¥ (z,0)
oY

2.¢(xz,t) as a function of ¢)(z,0) and Bt (for t=0)

3. ¢(x,t) as a function of |(x,0)|?



Quiz n°1
By integrating of the Schrodinger equation

oY _ h2

JAN
ot  2m v

1h—

What do you get?

1. ¢(z,t) as a function of ¥ (z,0)
0

2.¢(xz,t) as a function of ¢)(z,0) and En (at t=0)

3. ¢(x,t) as a function of |(x,0)|?

See the proof on slide 57



Corollary of the 2"d postulate

Norm conservation

A* A
ot 22m v

B?’b — zi A@D and

ot 2m

ﬁ %/ [ (7, t)|2 d3r = 0 Try to demonstrate it !

Paramount of importance because |1)|? is a probability density
de Broglie’s waves are solutions of the Schrodinger’s equation

Y(7,t) = 9o ei(E'F_”t) — o LPT-E)/R

De Broglie’s waves are not normalized e.g a plane wave would

have to fill all space and thus would require infinite energy! =
e

¥R 1P PARIS




Applications of de Broglie’s waves

The resolving power of a microscope is limited by the wavelength,
typically a fraction of micrometers with visible light

With an electronic waves operating at much shorter wavelengths, it is
possible to access the tiny details of the structure of matter

E. =150eV y =7 105 m/s A=1A

& | S.Borensztajn,
B CNRS
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Applications of de Broglie’s waves

Coherent Bragg diffraction

— > O
.5 The crystal has a period of a few
e : s: Angstroms e.g. the wavelength of the
- ® e probe must be adjusted accordingly
_ @
—  w @ \
O \
Diffraction pattern of a potassium
r=1A layer deposited on a crystal graphite
electrons Vv = 73 106 m/s E=150¢eV Penn. State
University,
neutrons v=4000m/s E=0.1¢V i
(2007)

_ ST NS TELEEE Applied Quantum Mechanics, F. Grillot, EE270 SR
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4.
Which way?

‘f,j I
- ﬂuﬁ\
Po -

TELEEDM
aris

mEE

éf:'g}lPPAnls




What we know

The knowledge of the way followed by the particles (if available) would
definitely ruin the fundamental concepts of quantum mechanics.

If slit 1 is left open, we would not observe any interference but only a
diffraction pattern. Same conclusion if slit 2 is left open.

- The particle passes through slit 1
Events
- The particle passes through slit 2

But,
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A possible way to track the path

>
—>E§ We measure simultaneously the
@ o I impact point x of the particle and
E— the setback direction of the screen
—_— 0 along (Ox)
— X
Lo, ] @ -0 m_, *+53
Path 1 P = P00 ¥
— 1 D
—_—
— (2) — 3
e® —
. |- D N Path 2 pO D
(D > a)
Difference between the two setback (1) _ (2) _— o
Px Px
momentums D

Applied Quantum Mechanics, F. Grillot, EE270



How to distinguish the paths?

To distinguish the two events, “the particle passes through slit 1” or “the
particle passes through slit 2”, we have to know the momentum of the

screen before each detection with a precision such as

Apy < glgo Screen

To observe the interference fringes, we have to position the screen
before each detection with a precision such as

ING 2 A—D Fringe interval
a

Apr Az h

TELEEDM
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How to distinguish the paths?

We will see later on that it is impossible to prepare a system (particle,
screen, etc.) in a state where both the position and the momentum are
simultaneously known

h

Using a wheeled screen does not allow to identify the way followed by
the particles while observing interference fringes
Quantum mechanics requires to precise the experimental protocol
- We can make an experiment where interference are observed
- We can make an experiment where the path followed by the particle
is identified

- But we can not do both at the same time

:f:'gjlppAms




Relationships for a free particle

Classical mechanics

Quantum mechanics

Intrinsic Mass m Mass ™
characteristics Charge ¢ Charge 9
State of the Position r(t) Wave function
particle Momentum p(t) (7, 1)
dr _ p
Equation of dt ~ m O i
motion dp Zha = Y
bu Y 2L
dt
Type deterministic random
", D 3P = |¢(7,t)|? &>

Applied Quantum Mechanics, F. Grillot, EE270
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Section 2
Position and velocity of a quantum particle

The general Schrodinger’s equation

Joseph Fourier s
1768-1830 :

William R. Hamilton
1805-1865




1.

Fourier transform

1768-1830
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From Fourier series to Fourier transform

g(x) Periodic function g(x) of class C2
L, roe 2
\ /\ glz)= Y  fae™or =T
\/V\“m/ /V\/ /v//vf\/v\ ZE) n:—ool L L
\/MV\%V&V&V\ d with fn:_/ g(x)e—inﬁoa}dx
L 0
g(x) Can we express an aperiodic function g(x) as
A an integral over a continuum of exponentials?

+00
e w2 / 7€) ev de
T -~

C~: smooth functions with rapid decrease (see Schwartz’s space)

0@ 1P PARI




Definition
In Mathematics, the FT is defined in L' space (integrable functions)
f—F f©)= / e f(a) da
R

In Physics, the TF is defined in L2 space (square-integrable functions )

1 ke —ix
b= )= o= [ ) de
a:p/h = dimensionless x = position h =Jis P = momentum

The Schwartz’s space S is used in quantum mechanics. It represents
rapidly decreasing functions C~ e.g. a function f(x) such that f(x), f'(x),

f"(x), ... all exist everywhere and go to zero as x — *« faster than any
inverse power of x

B || e omn e

N2 1P PARIS




Properties

If ¢)(x) is known, we can calculate ©(p) by using

—ixzp/H U(x) dx

s&(p)=\/217h/e

Is it also possible to retrieve v)(x) when the FT ©(P) is known?
YES!  o(z) 1 /
! €T) = e
V2mh
By definition: o (p)is the direct FT of ¢ (x) e::i:Cp/TL &
Y (x)is the inverse FT of ©(p)
FT
Position ’gb(aj) £ > gp(p) Momentum

ixp/h

©(p) dp




Properties

Isometry of the Fourier transform

01 (2) s 1(p) a(2) < s ()

Isometry /lbik (CE‘) Vo ($) AF = /Spik (p) P2 (p) dp

_ Scalar product
Compact notation (¢1|¢2) = (¥1|¥2)  (see Hilbert’s space)

Normalization conditions

1= [ @) dz = [ o) ap

Compact notation 1 = (Y[y)) = (p|p) Scalar product




Properties

FT
Derivatives and Fourier transform? ’(p(x) <> 90(]?)

ixp/h

©(p) dp

w(@:&/e

There is no issue in taking the derivatives under the integral term which
is okay owing to the Schwartz’s space

dy(z) 1 izp/h | 1P dy(z) FT  ip
de \/27Th/e ’ [h g0(]))](110 dr g %gﬁ(p)

©(p)

— <>

dx? V21 h dx _?

Taking the derivatives in the position space = multiplication by ip/h in
the momentum space

I DTS e cuntum Moo, FoGrlo EE20. 2SI
»f:qg;lppAnls
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Schrodinger’s equation (free particle)

Let consider the initial condition (t=0) of the wavefunction be: 1)(x, 0)
We search the solution Y (x,t) of the Schrodinger’s equation
L0V, t) B2 0%P(a,t)
ot 2m  O0x?

Let us use the Fourier transform
2

0%y (x, t) p
¢(33,t) S— So(pa t) 4 an § ? _TLQ (P(p7 t)
2

L 0p(p,t) p
13 == o(p,t
h—— chp(p )

The FT of the Schrodinger’s equation is

. D
This equation easily be integrated ¢(p,t) = ¢p(p,0) e™ P t/(2mh)

with |¢(p,t)|% = |e(p,0)|?
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Schrodinger’s equation (free particle)

The evolution of the Fourier transform for any t is given by:

o(p,t) = o(p, Q) e~ Pt/ (2mF)

To retrieve Y ( X, T ) we use the inverse Fourier transform
px/h
p,t) e/ dp
\/QWH/SO( )

+00 . .
/ p’ o~ P t/(2mh) eza:p/h dp

P(x,t) =

¢(5L' t \/ﬁ

Initial conditions ¢(p,0) = / Y(z,0) e~ 1P/ g
\/7

- general method to solve the Schrodinger’s equation (free-particle)
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Momentum of the free particle

If the particle is in a quantum state¢(w), the associated probability

distribution for the momentum is such as
FT

P(p) = |p(p)|? w(x) «—s 0(p)

We know that if 1)(x) is normed then /P(p) dp =1
And we have seen that |©(D, t)|2 = |e(p, O)|2
e.g. the quantity P(p) is not time-dependent (free particle)

In classical mechanics, once the trajectory of the particle x(t) is known,
we can calculate the momentum. Does that remain true in quantum

mechanics? dr d<£IZ>t ?

p=m— mmy (pr=m—g=
_ _ Applied Quantum Mechanics, F. Grillot, EE270 LR
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Momentum of the free particle

Time evolution of the mean position (Gaussian wavepacket)

‘|¢(CI370)|2 ¢($»t)|2

A x SN x,

(7)o ; ’

(®)o = /x 9 (z,0)[* dz ()¢ = /:13 (b)) de

-

-

A

d(x)y
dt

is defined as (p); = /p lp(p, )| dp ?

Do we find (p): =m when (p);




Momentum of the free particle

Let us try to re-express (p> — /p |90(p)|2 dp as a function of w(az)

First, we write the mean momentum as follows (p) = /w*(p) p o(p) dp

Isometry /SOT(Z?) p2(p) dp = /Wf(f’?) Yo (z) do

o1(p) = 0(p) s  Yr(z) = P(2)

Derivative ~ ¥2(p) = p»(p) <—i> Wo(z) = hd¢($)

¢ dzx

- | /w ﬁdw)dx




Momentum of the free particle

The evolution of the mean position of the particle is given by

d d o™
S?t :a/a:w*(x,t)w(x,t) dx :/xw dew—!—/ i Y dx

Then we have to use the Schrodinger’s equation
8?70 ],—LQ 82w 8¢* B h2 62¢*
(975 - 2m Ox2 ot  2m Oz2

Integration by parts assuming Try to demonstrate it (not trivial)

Y > 0 for |z| —o0 d(x): ., h 0y
dt _/¢

im Ox
-

h 8¢
QED
dt / il i Or = (Pt

.



Momentum of the free particle

At t=0, the wavefunction of the particle is ¢(x, O)
(@, 0)[

>

Axo
X
>

Time of flight measurement: after a certain time such as Az; >> Axg
it is possible to show that the position distribution reproduces

precisely the momentum distribution | (p, O)|2

A
v : Y(z = o + L, t)|?
>
| o |p(p = mL/t,0)|?
. Azxy |
- —> x
e E— - >
<x>0 T = <£U>0 + L
Measurement used in cold atom experiments to determine the
momentum distribution of atoms in the optical trap
4 {ii |
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Bose-Einstein condensates

Bosons can condense in unlimited numbers into a single ground state
and not constrained by the Pauli exclusion principle
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Bose-Einstein condensates

Bosons can condense in unlimited numbers into a single ground state
and not constrained by the Pauli exclusion principle

2 D velocity distributions

~200nK

--/-’
-~ i

()l mim

JILA, University of Colorado, United States
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2.
Position, momentum, energy operators

General Schrodinger’s equation




Position and momentum

Mean position (z) = /x |¢(33)|2 dr = /¢*(5’7) r () dx

Mean momentum  (p) = /p lo(p |2 dp = /qp h(:b
i do

We introduce the position and momentum operators

B / $*(@) [Fv()] dz P(@) = ()

= [w@ o) e i) 25

Later on, we will able to generalize the concept of operators to any

physical quantities (quantum mechanical observables)

éf:'g}lPPAnls




General Schrodinger’s equation

We have seen that the evolution of the wavefunction 1/(z, ) for afree
particle is driven by the one dimensional equation

L O h? 0%
th— =

ot 2m Ox?
We can rewrite this equation using the momentum operator
Loy pP p hOY(z)
"ot 2m¢ ¥(z) Oz
a2
. 0y 1 with IA{ — p—
or zha = Hy o

}A[ is the “kinetic energy operator” which coincides here with the total
energy (free particle). The Schrodinger’s equation links time and energy

TELEEDM
aris

mEE

:f:.gjlppAnls




Schrodinger’s equation with a potential

A V(x) The idea is to keep the same structure
Loy
zh—¢ = Hvy
ot

And we include both kinetic and potential
x  energies to form the Hamiltonian (e.g.
» total energy operator)

2nd postulate (general case): for a particle of mass m and moving into a
potential V(x), the Schrodinger’s equation is written such as

G /R . D )
— = ith H=— VvV
ih o Hy  wi o T (z)
A h? 0%(x,t)
Hy(z,t) = — ! vV ot
blat) = -5~ 5= + V(@)(z,t)
Quantum equivalent of the Newton’s law of motion in classical physics
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3.
Wavepacket

Heisenberg’s uncertainty principle




Physical meaning of the Fourier transform

We have seen the existence of de Broglie’s wave (z) = e'*Po/"

associated to a particle with momentum p,, ..... but these waves are not
normalizable!

We can create a new object e.g. a wavepacket which is a superposition of

de Broglie’s waves emp/h

1
Y() = ——= [ 7" o(p) dp
Ll | - Amplitude

X

AR — = \VAVAVAV/\V/\VAL “V[\\ll\\//\\//\v/\v/\v“v’ =

—




Wavepackets

In classical mechanics we can say:
“Let’s assume a particle with position x, and momentum p,”

In quantum mechanics we must say:
“Let’s assume a particle described by the quantum state () and its
Fourier transform (p)”

- With a position probability distribution |¢(:C) |2centered at x,
- With a momentum probability distribution |90(p) |2centered at py

9 (@)]?] ‘~o e[|~ h/o
| \ a:= Jlk p=

TELEEDM
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Gaussian wavepacket

Derivations are analytical with Gaussian functions!

Ap(p) (p(p) 0¢ e_(p_po)z/(4q2) P(p) X e_(p_p0)2/(2q2)
28p Mean (p) = po
| P Dispersion Ap = gq
Po
What is the corresponding wavefunction 1 (x)?
Re(ib)" w(x) x eip():c/h e—q2ac2/h2 P(x) X e—2q2:132/h2
W _
\V/\/\M\” m n!\/\/\/\V/ s Mean <w>_0h
VVV\}U uuuv\l_! Dispersion Az = —
U U U h/po 2(]
< >
2Az .

For a Gaussian wavepacket, we always have

TELEEDM
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Gaussian wavepacket

Quasi monokinetic wavepacket Ap < po

Re(v)

Lots of oscillations are observed

/\Vl\vl\f\nnn MMMI\I\VAV% N np_ D
411 < e
Az A plane wave is retrieved!
Well localized wavepacket Az =~ ) Re(7)
The momentum is not well defined Ap = pg "A\j va\v s

h A wavepacket cannot be simultaneously well localized

Az Ap = 9 and quasi-monokinetic!

0@ 1P PARI




Heisenberg’s uncertainty principle

Can we generalize? YES

Position probability distribution for the particle: P(z) = |1 (z)|?
Az = [(2?) — (#)?]""? (@) = [ " [(@)|? da

Momentum probability distribution for the particle: P(p) = |o(p)|?
2 211/2
Ap = [(p?) = ()] = [ 7" le@)? dp

We always have : | Az Ap

h h
Also true in 3 dimensions : Ax Ap, > 3 Ay Ap, > 5

TELECDM

. N | S

m
-
8=

9




Quiz n°2

What does the Heisenberg’s uncertainty principle mean?

A:L‘Ang

1. It is not possible to prepare a particle in a quantum state such that
both the position and momentum are simultaneously well defined

2. The wavepacket spreads out (true but not related to the question)

3. The product of the precisions of the measured position and
momentum is larger than the modified Planck’s constant

TELEEOM
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Quiz n°2

What does the Heisenberg’s uncertainty principle mean?

Aa;Ang

1. It is not possible to prepare a particle in a quantum state such that
both the position and momentum are simultaneously well defined

2. The wavepacket spreads out (true but not related to the question)

3. The product of the precisions of the measured position and
momentum is larger than the modified Planck’s constant
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Quiz n°2: solution

It is not possible to prepare a particle in a state such that both the
position and the impulsion are simultaneously well defined
FT

Let us consider 2N particles identically prepared ?,D(.”B) <> QO(Z?)

Measured position (N particles) Measured momentum (N particles)

n(a:)‘ n(p)
A, il

e

() ()

Az A
Az Ap > g 2

L

These histograms can not be simultaneously arbitrary narrow. Note that
the uncertainty principle has nothing to do with the resolution of the

equipment i.e. the width of the histogram’s channels
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8.
Stability of Quantum Matter

Applied Quantum Mechanics, F. Grillot, EE270




Instability of “classical matter”

The planetary model of the atom does not make sense
when one considers the electromagnetic forces
involved. The electron in an orbit is accelerating | Pron@— 2%,
continuously and would thus radiate away its energy 4
and fall into the nucleus

r

2

Coulomb potential V(r) = —e?/r 2 — 4
4#60
Newton’s law mw?r = 62/7'2 —> v=wr =e¢/y/mr
1 1 €2 e?
2 2 mr 2r
2
e
Total energy Fiot = Frin + V(r) = - Eioi — —00
r

r— 0
The classical matter is unstable !
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Instability of “classical matter”

Larmor’s formula can be used to calculate the total power radiated by a
non relativistic point charge as it accelerates or decelerates

2 .
2 2 D e2r2ys a =w"r Acceleration

e‘a
P 3 4 W " c3 ¢ celerity of light

3 9 32
Relative energy lost after 1 cycle ol ~ 41 (ﬂ) = 4m (e /;>
mc

wr = e/+/mr |Etot] c
Binding energy
62/7’/
Typical values r=1A wizs 21048t —ie 3107°
™\ Rest energy

The relative energy lost after one cycle remains small however the

electron has an angular rate of rotation of 2 x 1016 cycles/s.
The electron would fall into the

2. 3..3/.4 ithi
m-c’r®/e* ~ 0.4 ns nucleus within 0.4 ns!
wHI
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Stability of “quantum matter”

L (7)=(p)=0
AyApy, > h/2

Quantum physics AzAp, > h/2

Classical physics

h
=12 2 2
The uncertainty principle contains Erin = ﬂ — A_p > 3h -
implications about the energy that 2 2m — 8mL

would be required to contain a
particle within a given volume

When the radius of the orbit L=>0, we observe that the positive kinetic
energy overwhelms the negative Coulomb potential!

TELEEDM
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Stability of “quantum matter”

Biot = Epin+ Epot

3h?
in T Qm L2
e2
Epot i V(L) — _f
o 3h?
Minimum L2

for

A
Etot |

|
|
|
|
\. Limin | ¥
— >
\
\\\//

Lmin —

4dme?

Here we extract the the Bohr’s radius of the electron that is the minimum
energy state (ignoring a multiplication factor of %)

Quantum mechanics tells us that an ATOM COULD NEVER COLLAPSE
as it would take an infinite energy to locate the electron on top of the

roton
_ Applied Quantum Mechanics, F. Grillot, EE270
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Section 3

Measurements in quantum mechanics

A A Can the cat be alive and dead
2 > at the same time?

G4

=




1.

The measurement of physical quantities:
position, momentum, & energy




Position and momentum

Point particle with wave function ¥ (x)

Position probability distribution  |y(x)|?
Expectation (z) = / x| (x)]? do

7)|? (Hitachi

hAAAﬂ

Measure of the momentum through a time of flight experiment
FT

P(x) —— (p) dP = |¢(p)|* dp (p = pa)
) = [ o) ds
that is equivalentto (P) = /W( }; % dx

0@ 1P PARI




Quiz n°3

Operators and quantum states

1. The operator I only acts on the function Y(x)

and the operator p only acts on the function 90(]9)

2. The operators I and p act both on )(x)and ¢(p)

3. The Hamiltonian is the sole operator acting both on (x) and QO(]?)

TELEEOM
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Quiz n°3

Operators and quantum states

1. The operator I only acts on the function w(x)
and the operatorﬁ only acts on the function QO(p)

2. The operators I and p act both on )(x)and ¢(p)

3. The Hamiltonian is the sole operator acting both on 1)(x) and QO(]?)
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Operators

Expectation values

@) = [z W@ do = [ (@) o v(@) do

(p) =/p|sf>(10)|2 dp =/¢*( hdw da

i dx

Inner (scalar) product in L2 space

wuwﬁz/%ww%@wm

D | RS ot ok £



Operators

Position operator

/w P(x) — 2 ()
— (0 | &)

Momentum operator

p= [ 0@ y(z) 2 P W
= (¢ | py) 5=

I



3rd postulate (weak version)

To every observable In classical mechanics A there corresponds a linear,

Hermitian operator 4 in quantum mechanics

A

A is an operator acting on the wave function space

If a system is in a state described by a normalized wave function w( )

then, the average value of the observable corresponding to A is

/w [Ag(e)] do = (v | Ay)

Hermitian operator

i [dvse]ae = [ [vno] e )
(1 | Apa) = (Ad | )
_ _ Applied Quantum Mechanics, F. Grillot, EE270

.



Physical quantity Action of the corresponding op. on ¢(F)
Positon x, y, 2z, T Multiplicationby x, y, 2z, T
Momentum ) A ) ks e

u = oAt = v =l i
Pz, Py, Pz Pe = 5 0x Py 1 Oy 40z
— 2 i h = “~
p, P p:;v p? = —R:A
Total ener Hamiltonian A H2 ~
p? | 2m
FE = 2— + V(’I") h2
m = A+ V(F
5 A+ V(T)
Angular momentum Angular momentum -, |
f)—f’xﬁ operator L=rxp
P _h( 0 0
L. = xpy — ypa == T\ T Yo

TELEEDM
’aris

mEE

:f:.g;lppAnls




2.

Eigenvalues and eigenfunctions of
operators in quantum mechanics




Definition

An eigenfunction of an operator /Al defined on the wave function
space is any non-zero function wa (:E) in that space that, when acted

upon by /Al is only multiplied by some scaling factor called an

eigenvalue Q.

Ao () = a0 Yo (T)

Spectral theorem: If the operator/Al is Hermitian, there exist an
orthonormal basis of consisting of eigenvectors of A
- Each eigenvalue is element of the set of real numbers [R

- The operator 121 is diagonalizable

Note the occurrence of some subtleties when moving to a complex
space with an infinite-dimension! (see later on)

TELEEDM
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Example: The momentum operator

Let us search the eigenvalues and eigenfunctions of the momentum
operator
. h d
p= -
1 dx
q Eigenvalue
) — with
p?’bq(x) qwq(x) wq(aj) Eigenfunctions

dr — ¥ = (@) =Cenh

- The eigenfunctions of the momentum operator are the plane waves
- The spectral distribution of the momentum (e.g. the set of eigenvalues)

is the whole set of real numbers R
ﬁﬁ

¥R 1P PARIS




Eigenfunctions of the Hamiltonian
Play a crucial role to describe the evolution of many quantum systems

he d*yg(x)
— T 4 V(@) Yp(2) = B i)
Solutions usually not trivial (= numerical analysis)

UA

Some cases can be solved analytically

1 e
Harmonic potential V(x) = Emwsz /scAlGa . Ox s gigha i
q2 K
Coulomb potential V(r) = -
Ameqr

Constant piecewise potentials

TELEFDM
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Infinite well potential

Particle in a box
Hyg(z) = E ¢p(z)

V(x)
/ To simplify we assume vg(z) = ¥(z)
? Y 0<z<L r<0ouz>L
-
. > 'h2
0 L —>—V"(z) = E ¢(z) Y(z) =0
2m

Boundary conditions: The wave function is always continuous!

¥(0) =4¢(L) =0

TELEEDM
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Infinite well potential

We assume the energy £>0 and € R k = v2mE/h E = h2kz2/2m

—;—mWI(JI) = EY(x) 4 P (x) = —k* ()

Y(z) = asin(kx) + G cos(kx)

General form of the solutions

Boundaryat x=0: ¥(0)=0 = =0

Boundaryat x=L: (L) =0 = asin(kL)=0 = sin(kL)=0
-> All wavevectors k can take only discrete values
nm
k’zknzf 7’2,:].,2,...
5 AT

- And all eigenvalues of the energy are quantized FE, =n
2m L2

TELEEDM
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Infinite well potential

Eigenfunctions of the Hamiltonian can be expressed as follows

. . nm R2k2  h*n’n?
n(z) = asin(k,z) with k = — and E, = n _
¥n(2) ( ) L 2m 2m L2

L
Normalization / Yn(@))?dz=1 = a=+/2/L
0

The set of functions 1), is an orthonormal base of functions such as
$(0) = 9(L) =0

B
Orthonormality /0 Vn(T) Ye(x) dr = 0ne  (Kronecker delta)

The wave function can be represented by the expansion

+00 590
Y(z) =) Cntn(z) Y Cal2 =1
=1 n=1
Similar to a Fourier series expansion
Similar to a decomposition in a vector subspace

0@ 1P PARI




Infinite well potential

E,
En=n2E1 n=1,2,... E'3 I/\\/
h2m?
E1= 2m L2
: E, /F\\/
Yn(x) x sin(nrx/L)
E, x
n L

- An electron in a quantum well of diameter L=6 x 10° m
E=10 meV

- A nucleon (proton or neutron) in a nucleus of diameter L =4 x 1015 m
E.=10 MeV

TELEEDM
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Light emission from a quantum well

Gallium nitride

E2
L=12 L Atomic layers L=6
E, Photon hv =E,-E,=hc/ A
0 L
TL27T2
EQ—E1:(4—1)X—2
2mL
_ 3h%n?
o 2mL2 ﬂ% The Nobel Prize in Physics 2014
2 Isamu Akasaki, Hiroshi Amano, Shuji Nakamura

“for the invention of efficient blue light-emitting diodes which
has enabled bright and energy-saving white light sources”

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270 Ll
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A key application: Semiconductor lasers

Optical communications

Gas/molecule detection j_lQ?_ ~
- Medical (breath analyses)
- Environment (air pollution) - II '

- Security (explosive detectiol L

Countermeasures T :

Atmospheric communications =~

Diode lasers and quantum cascade lasers can produce stimulated light
from near infrared to THz range!

TELEEDM
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3.

What results for a single measurement?




Relationship between measured
results and eigenvalues?
We want to measure a physical quantity A of a particle prepared in the

quantum state ¥ (z)
The result of the measurement of A is predicted with certainty if and

only if the state ¥(x) is an eigenstate of observable A

Proof:

e

) the measure of 4 is predicted with certainty

/¢ [A¢a )] d /¢ ) @) B =i QED
Y= [v@ (Fra@ldr=a 5 Ad = (@) - (@) =0

Example: we found that an eigenstate of the Hamiltonian corresponds to

an energy level of the quantum well (particle in a box) -
ﬁ%i

:f:qg;lPPAnls




Relationship between measured
results and eigenvalues?

Converse?

(a) = / 4" (z) [Av(2)] de Ad? =0

We assume the system in the state ¥(x) in such way that the physical
quantity A is well defined (no fluctuations among the measured results)

Then, () is an eigenstate of A with the corresponding eigenvalue {(a)

Proof 0 = / ¥*(2) [(A — (@) 2(z)] dz

(A— (a))p(z) =0 = Ap(z) = (a) ¥(z) QED

TELEEDM
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Relationship between measured
results and eigenvalues?

Converse?

(a) = / ¥* (z) [Av(2)] de Aa? =0

We assume the system in the state ¥(x) in such way that the physical
quantity A is well defined (no fluctuations among the measured results)

Then, () is an eigenstate of A with the corresponding eigenvalue {(a)

Conclusion: The measurement of 4 is predicted with certainty if and
only if the state of the particle is an eigenstate of A

- The result is the associated eigenvalue (must be a real number)
- An eigenstate is basically a state without dispersion

TELEEDM
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What to expect from a measurement?

The measurement of a physical quantity gives a number (or a set of
numbers) which brings information on the system under study

Ex: Distribution of human height Frequency

RaRd 4

ot

—_

il

‘h'h_\ Height
R >

The result is trustable if and only if the measurement of a physical
quantity done over a short period of time gives the same numbers

(repeatability)

A short period of time means that the state of the system does not
substantially evolve between two consecutive measurements (i.e. same

experimental conditions)

TELEEDM
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Which state after the measurement?

Energy levels in a Time t, Time t,
quantum well
Measurement Another
E3 of energy measurement on
" E Result is € the same system at
o+ — — | t,and performed
E, What are the immediately after t,
. "
possible values? must give the same
Initial state result with
() = Z Crthn () State after the certainty
- measurement?

The measurement performed at t, is predicted with certainty if and only if
(a) The energy € must be an eigenvalue of the energy operator i.e. is an

element of the set of the eigenvalues E,
(b) The system has to be in an eigenstate of the energy operator at t,

Measurement at t;: QP(:I:) e wn(x)
1

:f:qg;lppAnls




Possible results?

In any measurement of the observable A associated with operator A, the
only values that will ever be observed are the eigenvalues of A

If the particle, before the measurement, is in an eigenstate ¢ () of A then
the result is with certainty the eigenvalue ¢,

If the particle, before the measurement, is in whatever state

= Catha(z) with Y [Cof*=1

Then the result is randomly an eigenvalue of the set of &,
What is the corresponding probability law?

We know that (a) = / W [AY|dz =... = Z €. |%a,

— [wldry) dz —ZlCF "

leading to the probability law a_ : p, = |C'04|2

TELEEDM
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3rd postulate (strong version)

In any measurement of the observable A associated with operator /Al, the
only values that will ever be observed are the eigenvalues, which satisfy

the eigenvalue equation

a Eigenvalue (non-degenerate)

o

A% (:B) = Qo wa (x) Yo (x) Orthonormal eigenfunctions

Before the measurement: ¥ () = Z Catha(x) with Z |Gl =1

(a) If the system is in an eigenstate of A with eigenvalue a, then any
measurement of the quantity will yield &,

(b) The probability that eigenvalue a, will occur -- it is the absolute value

squared of the coefficient, Po = |Ca|2

(c) After measurement of ¢)(x) yields some eigenvalue a,, the wave
function immediately collapses into the corresponding eigenstate ¥a (7).
In the case that is degenerate, )(x) becomes the projection of ¢)(x) onto
the degenerate subspace associated to the eigenvalue g,

:fﬁ;lpmms




What to learn from a measurement?

A single measurement performed on a single particle reveals information
on the state of the quantum system after the measurement

Y (x) unkown

AVAVAY

Y= ZCad)a

A Pa = |Ca|2
Classical o, If the result is a, the state
apparatus / immediately after is
3 aaz zp s wag
@ \ =

From this single measurement, we cannot retrieve the state ()
We only know that p,, is not zero

The wave function is modified in an irreversible way by the measurement
Wave function collapse e.g. quantum decoherence

TELEEDM
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What to learn from a measurement?

If we prepare N particles in the same quantum state (unknown), it is
possible to determine the probabilities p,. This would require to perform

only a single measurement of 4 on each particle

y(x) unkown

AVAVAY

=) Catha

Classical
apparatus

U

N>1
p=N,/N

p,=N,/N

p3=Ny/N

From p, = |C,|? itis possible to retrieve at least partially ()

Applied Quantum Mechanics, F. Grillot, EE270
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4.
Eingenstates of the Hamiltonian &

Resolution of the Schrodinger equation




Evolution of an eigenstate

We determine the eigenstates of the Hamiltonian Hv,(z) = E, ¥, (z)

The set of functions 1),, is an orthonormal basis of wave functions

Initial wave function: ¥(z,0) = ZCn Yn(z) with C, f W (0w (x, 0)dx

Wave function at time t:  ¥(z t) — Z Cy, Y (x) e Ent/P
Proof {;_¢ B I-iﬁ,b(x,t)

5_¢ _ ZhZCn?,Dn(l‘) (—zE ) o—iEnt/h _ Z C, Epih () e~ 1Ent/"

ﬁw(xat) e Z Cnﬁ wn(m)e_iEnt/h = Z CnEnzpn(a:) e_iE“t/h
% n QED

l
=

TELECOM



Eigenstates of the Hamiltonian

Wave packet
collapse

Consider the particle in the initial state at t=0 ¥ (x,0) = ¥, (z)

Then, the solutions of the Schrodinger equation at time t is given by
’tﬂ(x,t) _ wn(x) e—iEnt/h
The eigenstates of the Hamiltonian are stationary states

- the probability density is time independent Y (z, t)|2 = |tn (37)|2

Also valid for all expected values associated to any physical quantities

@(®) = [ ¥ (@, )[Av(z,1) do
i No time
= /zp;(x)[A@bn(x)] dx depentdence!
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Schrodinger’s cat

A diabolic trap: A cat, a flask of poison, and a radioactive source are
placed in a sealed box! If an internal monitor (e.g. Geiger counter)
detects radioactivity (i.e. a single atom decaying), the flask is
shattered, releasing the poison, which Kkills the cat!

The principle of superposition tells that the cat is both dead and alive
e.d. the cat is in a superposition of different states

1 Schrédinger’s cat in the garden of the

- : Zu Vier Wachten (Ziirich). Depending on
¢ \/5 [walwe T wdead] the light conditions, the cat appears
either alive or dead.

Which state for the cat?
Was it a stupid question?




Schrodinger’s cat

NO because a quantun system is in a superposition of different states
Remember the double-sit particle experiments. Which way?

Y= —=[¥1 + P2

1
V2

Schrodinger’s cat brings the following question: Can we observe
macroscopic quantum states superposition? We also see that this

thought experiment contains the concept of entanglement (i.e. cat/atom,
photon/slits)

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270 Ll
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Schrodinger’s cat

PHYSICAL REVIEW A VOLUME 45, NUMBER 7 1 APRIL 1992

Manipulation of photons in a cavity by dispersive atom-field coupling:
Quantum-nondemolition measurements and generation of “Schrodinger cat” states

M. Brune, S. Haroche, and J. M. Raimond
Laboratoire de Spectroscopie Hertzienne de I’Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France

Rydberg’s atoms

e) |
. R'

9)

S. Deléglise et al, Nature, vol. 455, pp. 510 (2008)

»f:qg;lppAnls

@ The Nobel Prize in Physics 2012
Serge Haroche, David J. Wineland




Schrodinger’s cat

By producing quantum interferences, it is possible to show that a
“AND” in quantum mechanics can be transformed into a “OR” in
classical physics (quantum decoherence)

Quantum states: cat “dead” or “alive”

024"

. 2|nterferences represent the cat’s :

quantum coherence
S. Deléglise et al, Nature, vol. 455, pp. 510 (2008)




Schrodinger’s cat

By producing quantum interferences, it is possible to show that a
“AND” in quantum mechanics can be transformed into a “OR” in

classical physics (quantum decoherence)
Classical state

Quantum state

: < o\."
g ' -1(. :

Quantum
decoherence -4

4 4
Classical-quantum limit: objects with large number of particles does not

see any superposition i.e. the time for quantum decoherence is ultrafast

TELEEDM
aris

and scales with the number of particles
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Superposition & quantum decoherence
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Section 4

The Quantum Harmonic Oscillator*

Energy

A

if (3)

l (1)

X

*Dirac’s notations used in this section are explained in section 6
TELECYEIM
mAAT
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What we know from classical mechanics

The simple harmonic oscillator describes linear, undamped oscillatory

dynamics like mass-spring systems, vibration of molecules, LC
circuits, etc

AP The force needed to extend or compress
m— = —Kz = —mw?xz a spring by some distance is
dt proportional to that distance

Kx? mw?z?
Potential energy V' (x) = = — -

Classical solutions

x(t) = Acos(wt + 6)
p(t) = —mAw sin(wt + 9)




What we know from classical mechanics

The total energy of this system is conserved and oscillates between
Kinetic and potential

(x) 1
F = %mqﬂ + %sz — constant

Turning points

2F
Lo — T —

|
I
_xo 0

Now let us move to the quantum harmonic oscillator which is useful to
explain the quantization of the electromagnetic field, and oscillations of

the certain molecules like NH;
ﬁiﬁﬁ
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Quantum harmonic oscillator

Consider the Hamiltonien

A 1 mw?
H=_—"—p>+—3?
2mp 2
And the following operators ,
2 A mw [ . A
Annihilation or loweringoperator a=a_- =4/ — | T+ —P
2h mw
: _ At s mw [ . A
Creation or raising operator a' =0y =4 /—|ZT——>D
2h mw
We can rewrite,
2 =1/g2=(a+al)and p=—i\ /(G —aT)

: 1
leadingto H = hw (éT& i 5)




Quantum harmonic oscillator

The Hamiltonian can be written as
1

with [\ = &T& the “Number operator”
(Hermitian)

Commutation relationships

2,p| =ih [a,a'] =1 [N,d)=-a [N,al]=al

We can demonstrate that the eigenstates of H are also eigenstates of N

7L are real eigenvalues

TELEEDM
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Quantum harmonic oscillator

Since we have proved that H = hw (N + %)

the energy eigenvalue corresponding to state |'n,> is defined as follows
b, = (n—l—%)hw forn=0,1,2,....

We can also observe that,

:> CALJr \n) (& |n>) is an eigenfunction of ﬁ and ]\7

Na' |n) = ([N, &'+ a"N) |n) = (n+ 1)a" |n)

Na|n) = ([N,a] +aN) |n) = (n — 1a|n)

=> (?L]L (&) “creates” (“annihilates”) one unit fjy of energy




Quantum harmonic oscillator

Na|n) = (n—1)a|n) mmd aln)=cln—1)
Assuming |n> is normalized, we get (n\n) =
(n|laTaln) = |c|? and (n|aTaln) = (n|Nin) =n

:> n — ‘Cl2 :>This means that 1, must be real and nonnegative

Then we end up with the following relations

aln)=+/nln—1)and a'|n) = vn+1|n+1)




Quantum harmonic oscillator

Let us apply (&) sequentially to an eigenstate |n>

0% n) =v/n(n —1)|n — 2)
A3

&’ n) =v/n(n —1)(n —2)|n — 3)

If 70 is a positive integer, this sequence must terminate when we
getto \/n(n—1)...0

If 70 is not a integer, then the seauence won’t terminate since 71 can
be negative. But we proved all 7) are positive

Ergo, the sequence terminates at 7 — () and 77 in general must be a
nonnegative integer (n =0,1,2,...)

TELEEDM
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Quantum harmonic oscillator

We can construct the form of the eigenstates \n> in Hilbert space

using &T if we know O>

1) =at o)

2—&T 1—(&T)2

2) = 5l = " o)

3—&T2—(&T)30

3) = “=12) =" [0
(@t

) = [0)




Quantum harmonic oscillator

If we move back to the x-representation

a|0) =0 @lalo) = /2 <a:

| [T d
with g = m = (37, ‘I'CC(Z)@) <ZC,|O> —

The normalized solution to this differential equation is Gaussian

o= = e[ L (2

= /1 €x
™ / 7/ L( L0




Quantum harmonic oscillator

For 70 >0, we can construct ‘n> —

In general, we have

()= ('|n) = :

Polynomial expression

/
r —x
1/2
771/4:1:3+ / V21! (

Hn(z) Hermite polynomials such that
Hi(z) = 2z, Ha(z) = 42° — 2, etc.

Further readings: Arfken and Weber, Mathematical Methods for Physicists, Academic Press, Wiley

am)”
<2 |0)

o d
Odz!

n
) e

Applied Quantum Mechanics, F. Grillot, EE270
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Quantum harmonic oscillator

Large n - classical case

/ [9hn ()2

Classical mechanics
1
E = —mw?z} T 25

)
|

3

X

Quantum mechanics
2hew(n + }) WaVavi

2
E,=Mn+3h x5 = — Py

The ground state (lowest energy eigenstate) has energy F) = hw/2

(zero point energy)
The set of energy E,, is discrete (bound states) and evenly spaced

We define a |O> — (0 e.g. applying Q to the lowest energy eigenstate

destroys the state -
ﬁﬁi
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1
Enz(n—|—§)hw forn=0,1,2...

TELECOM
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Section 5

Quantization of Simple Physical Systems

A ‘hl i

-u"Lm

Alice going thru a looking glass, After Lewis Carroll



Quantum corral reef

After IBM

Scanning tunneling microscopy: this image shows 48 iron atoms

positioned into a circular ring. The ripples in the ring of atoms are the
wave patterns of some of the electrons that were trapped in the corral

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270 Ll
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Bound and scattering states

Applied Quantum Mechanics, F. Grillot, EE270
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Reminders

A2
Hamiltonian = 2 V(2)

2m

h
p=-=
/)

L]
dx
Search the eingenstate of the Hamiltonian Hv,(z) = Ey a(x)

E, Real eingenvalue (energy)

- Time independent Schrodinger’s equation

Once we know v,(z) we can calculate the evolution of (z,t)

P(,0) =) Cotha(rz) mmmp  ¥(@,t) =) Cota(z)e Ft/P

- Time evolution of the wave function state

N2 1P PARIS




Bound & scattering states

Consider a potential which tends to V, when x>«
[ V)

R2 d24
& + V(z) ¢¥(z) = E ¢(x) V, -

Two interesting cases

:> Y (x) goes to 0 when x >

If / 4(x)|® dz = 1 State eligible as a wave function

- bound states

:>w(x) behaves as a combination of plane waves at infinity
W(z) ~ ae™ + Be™*T  when = — +oo et/ou — oo

Can be used to create wave packets - scattering states

TELEEDM
aris
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Bound & scattering states

h2 d%y
—% da:_2 -+ V(m) w(m) =F w(w)

(x)

7 A b \

min

é No relevant states for E<V,,

Between V,,,;, and V,: Bound states (finite number of elligible
states)

é Beyond V,, energy continuum: Scattering states (i.e. domain
of the plane waves)

0@ 1P PARI




Steady-state solutions

Sturm-Liouville theorem (real wave functions): As we change to a
higher energy level, the index n grows, and we have more nodes
(points where the sign changes) of the wave function

Further readings: Arfken and Weber, Mathematical Methods for Physicists, Academic Press, Wiley
ta(z)

4 . “Odes
\ 1 ¥1(z)

IES1>: 1 node
AL -
Yo(z) \f

IGss.
x= A
X

Case of symmetric potentials: Odd or even eigenfunctions
(nondegenerate) or whatever (degenerate)




Boundary conditions

Potential V(x) Wave function @(x)

Continuous, (p(X) V(x) Continuous, bounded,
bounded 2"d order derivative ok
(real case)
Discontinuous, V(X) Cotntlnuous,_boqnded,
\ 1storder derivative ok
bounded P(x) \ (i.e. ®”(x) discontinuous)
(step-like)
Discontinuous, N\ Continuous, bounded,
unbounded P(x) No derivatives
(wall-like) (i.e. @’(x) discontinuous)

TELEFDM
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2

Semi-infinite well potential

Applied Quantum Mechanics, F. Grillot, EE270
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Scattering states

Consider the case with E > V|

E Region1 " + szp =0
@ @ k=+vV2mFE/h
A w(O) =0
Vo —> Y(x) = A sin(kx)
=0 P = 7, ) Region 2 ’(p" ~+ k,2'¢ = [

K = \/2m(E — Vo) /%

=—> ¢ (z) = B sin(k’z) + C cos(k'z)

Then, we have to write the boundary conditionsat * = L

TELEEDM
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Scattering states

At x = L the wave function ¥ and its derivative IIJ’ are continuous

Asin(kL) = Bsin(k'L) + C cos(k'L) k=+vV2mE/h
kAcos(kL) = k' (B cos(k'L) — Csin(k'L)) k' =+/2m(E - Vo) / h

System of linear equations (2 equations, 3 variables) for all E>V,
The trivial solutionis 4 =B=C =0

For all energies larger than the asymptotic value of the potential, we
found an eigenstate Yof the Hamiltonian. The eigenstate behaves like a
plane wave at infinity

Bsin(k'z) + C cos(k'x)

I .
ik’ x —ik' x
— e e
TELEEEH‘?



Bound states

Consider the case with E <V,

Region1 " + k% =0
O Q@ k=+vV2mE/h
A 0)=20
» $(0)
Vo mmp P(zx) = A sin(kzx)
=0 2=1 Region2 " — K2 =0

K = /2m(Vp — E)/T
We must eliminate the term which K
does not have a physical meaning =) )(x) = Be wM

Then, we have to write the boundary conditionsat * = L

TELEEDM
aris



Bound states

At x = L the wave function ¥ and its derivative 1’ are continuous

Asin(kL) = Be KL k=V2mE/h
kAcos(kL) = —KBe &L K=+2m(Vo—E)/h

System of linear equations (2 equations, 2 variables) leading to the
following solution (excluding the trivial solution)

kcot(kL) = — K

For given values of m and V,, the above equation can only be fulfilled

for discrete values of the energy E

TELEEDM
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Semi-infinite well potential

Continuum of energy states for £ > Vj

Bound states (finite number) for 0 < E < V)

TELEEDM
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Example: Big-bang nucleosynthesis

Proton-neutron: 1 bound state!
Thermonuclear reactions

. Interaction
energy Vo — E1 =~ 2.2 MeV
| p+n— *H+x
p-n distance 9 3
X =t p+“H— "He + v
E, ‘H+°*H — ‘He +n
Vo =2 21 MeV 2H+2H—>3H+p
Y SHe + *H — *He + p

L~28x10"¥m ‘H+*H — “He+n
Big-bang nucleosynthesis: The initial conditions (neutron-proton ratio)
were set in the first second after the Big Bang - the first atoms in the

Universe!
E AL
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3.
Tunneling effect

The difference between classical theory and quantum theory,
ilfustrating tunneling through potential barrier. This illustration
was used by Van Vleck in his last publication, the Julian E. Mack
Lecture at his Alma Mater. the University of Wisconsin,

in 1979, { After B. Bleaney, Contemp. Phys. 25 (1984) 320.)

TELECOM

Paris
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Transmission coefficient

Consider a particle with a mean energy E<V,

! V(x)

particle
> Vo I)
o

0 a

As opposed to the classical case, quantum mechanics allows a non zero
transmission coefficient that depends both on width and height of the

tunnel barrier (quantum tunneling effect)

K = \/Qm(VO — E)/h

T x exp(—2ka)
Not that this number is extremely small for macroscopic objects ... at

least as small as the probability to see the spontaneous flipping of a

coin on a table (10-1000000000000000000000000000)
AT

:f:.g;lppAnls




Analogy with wave optics

The tunneling effect can be simply observed in wave optics!

Potential barrier

Glass (n=1.5)

Optical Analogy

— e e

Air (n=1.0)

refraction
n.sin(ij)=nysin(i,)

-—-—————————————1—————

Applied Quantum Mechanics, F. Grillot, EE270
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Analogy with wave optics

The tunneling effect can be simply observed in wave optics!

Potential barrier Optical Analogy

= ——— e T

Glass (n=1.5)

Air (n=1.0)

Refraction
Critical angle

Refraction
n,sin(i;)=n,sin(i,)

-———————————————1—————

TELEEDM
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Frustrated total internal reflection

The tunneling effect can be simply observed in wave optics!

Potential barrier

A

7 Glass (n=1.5)

Optical Analogy

Total internal
reflection

o e S

Air (n=1.0)

refraction

refraction
n.sin(i;)=n,sin(i,)

-———————————————1—————

Critical angle

Applied Quantum Mechanics, F. Grillot, EE270
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Frustrated total internal reflection

The tunneling effect can be simply observed in wave optics!

Tunnel barrier Optical Analogy

A

Glass
\ 4

Air

Glass

e I ———————

TELEEDM
aris
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Frustrated total internal reflection

The tunneling effect can be simply observed in wave optics!

Tunnel barrier Optical Analogy

A

Frustrated total
internal reflection

Glass
\ 4
Air ;
7
Glass :
:
i
1
|
I
]
1
I
v :
I
I
I
%
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Frustrated total internal reflection

The tunneling effect can be simply observed in wave optics!

Tunnel barrier Optical Analogy

Glass
\ 4

Air

Glass

Frustrated total
internal reflection

e
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Frustrated total internal reflection
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Tunelling effect

E_- _______________ g
Re p(x)

VAADL
TR *

Similar to an evanescent wave (or a decay wave) in wave optics

E
73



Quantum tunneling

Let us give some numbers

v/ 2me2 (Vo — E))
hc
hec = 197 eV.nm = 197 MeV.im

ar/mc2(Vy — E) ~ 100 eV.nm — T ~ 0.24

T = exp(—2a

Consider a transmission coefficient of 0.24

mc? = 100 GeV mc? =1 GeV mc? =1 MeV
(Vo — F) =10 peV (Vo — E) =10 MeV (Vo —E)=1¢eV
a = 0.1 pm a=1fm a = 0.1 nm
Cold atoms Nuclear physics Atomic physics
Universality of the quantum tunneling effect!

:f:qg;lPPAnls




Scanning tunneling microscopy

= control voltages for piezotube B|nn|ng & ROhrer’ (IBM) 1981 -85
B Nobel prize winners 1986
E % tunneling
E = current distance control
N ; amplifier and scanning unit

data processing
and display

I | tunneling

;\L voltage

Nickel surface, (D. Eigler, IBM)

Electron: V\)-E =1 eV, a=5 Angstroms : T ~ 6 X 1073
a=6Angstroms: T ~ 2 x 103

The tunneling current changes very quickly with the distance (due to the
exponential term in the transmission coefficient)

TELEEDM
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Scanning tunneling microscopy

TELECOM
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Moving atoms one by one

Nanomanipulation: The STM tip is used to lift and put down the
atomic units

A set of STM images showing formation of a quantum coral from 48
Fe atoms adsorbed on the surface of Cu(111)

TELECOM
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Moving atoms one by one

Carbon monoxide man (IBM)

Stadium coral: Iron atoms on a
copper surface (IBM)

INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270 A
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Ultracold atoms

We use set of lasers to localize atoms (standing wave)

At v=5mm/s, 100 nK
oms 10 peV, Agg=1 micron

The lattice potential is reduced and then we let atoms tunnel for a given
time and finally we can measure their positions (wave packet spreading

- time of flight measurement)
—§e 4|
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Ultracold atoms

We use set of lasers to localize atoms (standing wave)

At v=5mm/s, 100 nK
oms 10 peV, Agg=1 micron

The lattice potential is reduced and then we let atoms tunnel for a given
time and finally we can measure their positions (wave packet spreading

- time of flight measurement)
—§e 4|
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Quantum horse race

C. Weitenber et al., Nature, vol. 471, pp. 319, (2011)

_ INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270




Alpha radioactive decay

Alpha decay or a-decay is a type of radioactive decay in which an
atomic nucleus emits an alpha particle (helium nucleus)

T (s)

24X -  £272v + 3He

Energy of the particle E is 4 to 9 MeV
Probability of disintegration T is 10° s
to 1018s

G 1929: logT + 2
amow : — a
VE
V)|

Potential E
wall due to 7

nuclear g

forces \ Coulomb barrier

1018j
1012.

106.

1076}

238

uranium

radium

4 5 6 789
E (MeV)
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4.
Double well potential
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How to explain the chemical bond?

2 nuclei and 1 electron (Dihydrogen cation i.e. ion H,*)

electron

electron
Nucleus 1 Nucleus 2 Nucleus 1 Nucleus 2

We will show that the tunneling jump of the electron from orbit 1 to orbit

2 lowers the energy. This effect is enhanced when the two nuclei are
located relatively close to each other

Attraction between atoms explains the chemical bond

N2 1P PARIS




Ammonia (NH,)

Under the right conditions, ammonia molecules can be flipped. Imagine

you are looking at an open umbrella from the side. A strong wind comes
along and turns the umbrella inside out!

Left configuration Right configuration

& ¢

The fundamental state of the molecule is in a superposition of two

configurations « Left » and « Right », hence quantum oscillations take
place between the two states through tunneling effect

N2 1P PARIS




Double well potential

“Left (G)* “Right (D)’ /
/S
/ o mae o

/] £

/

Consider the energy levels such as E<V,

What is the role of the tunneling effect across the barrier ?

As the Hamiltonian H(x) is invariant i.e. H(-x) = H(x), the eigenstates of
the Hamiltonian can be described through a linear combination of even

(symmetric) and odd (antisymmetric) functions

P(@) =p(—z)  P(a) = —y(—z)

TELEEF,?T
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Double well potential

v

D>
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Double well potential

v

TELEEDM
aris
4 i |

N2 1P PARIS




Energy levels

antisymmetric

\
N
S e e e T R L R e e e e

&
4 .
¢ symmetric
antisymmetric

-~ P e e W M M i i i i i o i

4
& .
symmetric
>

Ala
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Energy levels
2a

_____ antisymmetric

F
\\m
&
= |, _
¢ symmetric

antisymmetric

————— - ’.--"----m.----"-----.-
¢
Y .
————— symmetric
>
Ala
Infinite well
Width 2a
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Energy levels
2a

::I /¢
/symmetric
—)

- antisymmetric
_____ 51

-~ P e e e e M M P
4

r ————— 4 symmetric >

_ Ala E,, E,, etc.: energy
Infinite well levels of semi-infinite
Width 2a well of width a

mEE
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Energy levels

2a
E
_____ antisymmetric
b -2
¢
<:I /symmetric /

_____ Two states for each :>

antisymmetric energy \
51

_____ e e e e A P L L P L i S P, = = =
4

I— ————— 4 symmetric >

Ala
Infinite well
Width 2a The tunneling effect raises the

E,, E,, etc.: energy

levels of semi-infinite

degeneracy of the two initial states

Applied Quantum Mechanics, F. Grillot, EE270

well of width a
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Energy levels

2a

L Two states |
\ antisymmetric
Antisymmetric 5 & symmetric
S E2 ~F —
Symmetric Two states of
each energy -
Antisymmetric _El g
Symmetric

pa

/
7

The molecule appears in a superposition of two configurations « Left »

and « Right », with quantum oscillations taking place between the two
states through tunneling effect

N2 1P PARIS




Summary

= = Ab'
Antisymmetric

Use Sturm-Liouville’s
theorem p. 140!

Ya(x) /D\
\?/ =
Ps(x )/G\\XD\ / Symmetric

Symmetric

EA:El—I—A
Ec—E — A with A
if Vo >F Kk~ /2mVy/h

-------- ->_ P —
\Antisymmetric
-------- >-_ D

Applied Quantum Mechanics, F. Grillot, EE270

First excited state level
of the semi-infinite well

1

Ground state level of
the semi-infinite well

2h2W2 — eI

—_— —

mK,Cl,3

ka , KA > 1
TELEE{?_T
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Chemical bond

The cleavage 2A depends on the distance R between the two nuclei

electron electron
Nucleus 1 Nucleus 2 Nucleus 1 Nucleus 2
?
: - Antisymmetric = antibinding orbital
Electrostatic !
. 1
repulsion ' 24
]
1
Ny
(\

il
\

Symmetric state = binding orbital (stable)
>

N\

R

TELECOM
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Ammonia in an electric field

Objective: Using this molecule as a source of radiation

Operation in two steps

(1) How to transfer energy to the molecule?
Population inversion is obtained by using a static electric field to
select a given quantum state

(2) How to extract this energy as a radiation?
Stimulated emission of radiation is obtained by using an oscillating
electric field at frequency w,

Amplification by stimulated emission of radiation
MASER (small spontaneous emission with microwaves)

LASER (large spontaneous emission with light)

TELEEDM
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Ammonia inversion

Consider the ammonia inversion doublet with the lowest energy level
k h2 2 8 -K A
A _E, AE=E,-Bg = — x=*
2ma Ka

E1=0
i E
> E,-Eq = hw,, E,+E¢ =0

Ks

For both eigenstates

e
' = ~. Was(x, 1) = pas(x)e Eastit

| Yas (x,0) 1P=] pas(x) [°

fos(x)
J/\ /\| : Probability densities are symmetric
. s ; » and time independent (i.e. stationary

states) with values of 2 for each state
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Ammonia inversion

" a b+ ic general expression with
A= basuin d a, b, ¢, and d real numbers

The Hamiltonian in the basis is (|¢4) , |¢s)) diagonal

(lpa), s )) are eigenstates of the /:INH3

hw
with eigenvalues Ea=E +A= TO
(Taking E4=0)
A
Es =E — A= _70

A~ EA 0 h wo 0
e P = < 0 E5> T2 (0 —wo)



Ammonia inversion

y () .
/\l Consider the quantum superpositions
D% . 1
' : - lop) = —= (lgs) + lwa)) “Right (D)”
" . NG ght (D)
, 96(X)

|
‘/\ I p6) = = lgs) ~lea)  “Left (6)”
5 - 2 Those are not stationary states!

-b h

1
— O = = —
If W(t = 0)) = |ep) 0 (los) + lwa))

then |w(t)> — % (e—iESt/h |QOS> i e—iEAt/h |()0A>)

1 . |
@) = 5 [(ep) +1ee) €7 + ()~ lpc)) e "]

W(2) = COS( 2t)lson> + lsin(w t)lsoc>



Ammonia inversion

L 9D(%) . .
Consider the quantum superpositions
Py X 1
? - lop) = —=(lgs) + lea)) “Right (D)”

b b V2

1
\/\\ \ b6) = 5 (g5~ loa)) “Left (G)
; [ X -

if () = COS(wzt)Isom e lsin(w t)lsocﬂ

If the molecule is initially prepared to be in the “Right” configuration
over time, the molecule will be oscillating at frequency w, between

“Right” and “Left” dispositions

Nitrogen inversion - oscillating dipole - radiation at frequency
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Ammonia inversion
L OD(X)

/_\| Consider the quantum superpositions
|'\—5/—‘// ‘ Fe | >—L(| ) +1va)) “Right (D)”
[ . $D NG $s) + lpa ight (D)
L 96 (%) |
I/\\ J p6) = = (i65) ~loa) “Left (G)"
; — X,
-b b
1) E|  Frequency and wavelength
AN e
|%3) V= wo/(27r) — 24 GHz
120 meV
|1h2) = [¢a) i
V' 010 meVy - > Ao =c/vg =1.25 cm
%1) = |9s)
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Position operator

Consider the following matrix elements

WalXlpa) = fx | a4 > dx =0

4

In the basis W XWs) = fx | os P dx=0 Parity

Real

(lpar s los?)
<¢A|X|¢S> =3 ngZX(,OS dx = X0 functions

Ws|Xlpa) = f Qg xpadx = X

disposition with respect to the

R (6111 6112) - (O X0 It is not a position but rather a
center (non-diagonal operator)

:f:qg;lPPAnls



Position operator

Let us determine the eigenvalues and eigenvectors

0 xo)\(a [ A -
(XO O)\ﬁ)—n(ﬁ) Xlp) = Alp)

_/l )CO_ /l:“ and (Q):L(l)
xo —A =0 = =0 Bl N2 \#l
% (104 + lps)) = lop)

1

— (lpa) = los ) = lec)

V2

In the basis (|¢D),|©G)) the position operator is a diagonal with
eigenvectors that are linear combinations of A and S quantum states

TELEEETT

.4 4 |




Time evolution

1
We have seen thatif |y (z = 0)) = |pp) = $(|¢A) + s ))

Then, we get  [(¥)) = cos(wzt) lop) + zsin(w t) loG)

P(D) =| {pply(£)) |*= cos® (wzo t)
P(G) =| {pgli®)) PP= sin? (“’7"’)

WXy = x0P(D) - xoP(G) = x cos(wot)

The expectation value of the position operator oscillates over time
hence which proves the motion of inversion of the molecule
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Quiz n°4

In “Right” (D) and “Left”(G) states, what is the dispersion AX of the

position operator?

1. AX =0
2. AX=x0

3. AX= x0/2

In this basis, the operator is diagonal and the eigenvectors are linear
combinations of the symmetric and anti-symmetric quantum states

TELEEOM
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Quiz n°4

In “Right” (D) and “Left”’(G) states, what is the dispersion AX of the

position operator?
1. AX =0
2. AX=x0

3. AX= x0/2
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Interference & measurement

Suppose we start with an energy eigenstate |(,0S )

(lep) + lec))

1
lps) = —
V2
If we measure X, we can find * x, with probabilities 1/2

Suppose the measurement has given the result +x,; the state right after

the measurement is then
1
lop) = — (lgs) + lea))

V2

If we measure X again immediately afterwards, before the oscillation is
appreciable, we find +x, with probability 1; the state after the

measurement is |©p)

TELEFDM
aris

mEET

¥R 1P PARIS




Interference & measurement

Now, suppose that, on this new state |(,0D> we measure not X but the
energy E which we are sure was E = Eg when we started. We know that
that we do not always find Eg but the two possibilities Eg and E,, each

with a probability of 1/2
- We see in this case how the measurement has perturbed the system

At the beginning, the state was |(,OS )

At the end it is a mixture of |90S ) and |90A> in interference, for which
<E> = (Es + Ep)/2

All of this results from the superposition principle on one hand and the
filtering of which a measurement consists

- A position measurement implies a minimum energy exchange with
the system. Here, on the average, the exchange of energy is equal to A

TELElCDM
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Ammonia in an electric field

/ Static electric field F

Permanent electric dipole D= q)A(

Interaction energy with the field

In other words, if we measure X and we find *x, with some probabilities,
a measurement of D will give *d, with the same probabilities
The only difficulty, here, is to accept that a good model for the

observable D, is to be proportional to X

The potential energy observable W is simply the product of the
observable D by the numerical value of the applied electric field. The
only real justification for this choice is that it works very well

TELEFDM
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Ammonia in an electric field

Static electric field F

Permanent electric dipole D= q)A(

Interaction energy with the field

When the nitrogen flips from one side to the other, the center of mass
will not move, but the electric dipole moment will flip over

Eys O

HNH3:(0 Eq

I:I:HNH3+W:—(

)=3(5

ha)() f)

2 f —W()

Applied Quantum Mechanics, F. Grillot, EE270



Ammonia in an electric field

Static electric field F

Permanent electric dipole D= q)A(

Interaction energy with the field

When the nitrogen flips from one side to the other, the center of mass
will not move, but the electric dipole moment will flip over

Eys O

HNH3:(0 Eq

I:I:HNH3+W:—(

)=3(5

ha)() f)

2 f —W()

Applied Quantum Mechanics, F. Grillot, EE270



Ammonia in an electric field

Eigenvalues
PR
E -w,- A

ha)o = EA — ES
heé = —2dyE

{E.(©)

Applied Quantum Mechanics, F. Grillot, EE270



Ammonia in an electric field

Eigenvectors cos(6) = 02)0 - sin(0) = f -
w,” +§& w,” +&

>_ cos(6/2) | >_ —sin(0/2)

2 —(sin(9/2)) v ’( cos(8/2))

which can be expressed as

1) = cos(0/2) |pa) + sin(0/2) |ps )
lp_) = —sin(6/2) |pa) + cos(0/2) s )

o5 ) = s1n(0/2) [+ ) + cos(8/2) |p-)
lpa) = cos(0/2) lp4) — sin(6/2) |¢-)



Ammonia in an electric field

Eigenvectors cos(6) = a2)0 - sin(0) = f -
w,” +& w,” +§&

>_ cos(6/2) | >_ —sin(0/2)

2 —(sin(9/2)) v ’( cos(9/2))

Time evolution

@(t = 0)) =|pA) = cos(6/2)|@+)-sin(@/2)|@-)
@(1)) = cos(0/2) e |p+) —sin(@/2) e | -)

Probability | {¢sl¢(?)) > of switching from Ato S

2(E+—E_)t= 5 . \/0)02+§2t
2h w,” +&° 2

P(A — S) =sin”(0) sin




Ammonia in an electric field

{E-(©)

Consider the two limiting cases:

- Weak field effect (8 << 1), the tunneling effect tends to symmetrize
the molecule, which results in a vanishing dipole moment <D>=0
- Strong field effect (6 = n/2) pulls the molecule toward the classical

configurations D and G (“Right” and “Left”) where it has a dipole
moment <D> =t d,

0@, IP PARIS




Ammonia in an inhomogeneous electric field

The ammonia gas is simply let out of a little jet and passed through a
pair of slits to give a narrow beam. The beam is then sent through a
region in which there is a large transverse electric field

1Ys)
Co T MASER CAVITY
: A L) FREQUENCY wp
|
NH ' | [ 1 |
3 I | ! |
T T : [%a) ALL
| | ﬁ M /] o
: ' -
| | l
|
SLITS =----\-\-------' w N
INCREASING &2 A B AN
electric field €

We have reached population inversion / . Ea
At the output, the system is out of the \
equilibrium Eg
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Ammonia in an inhomogeneous electric field

Here we face an incredible phenomenon. There are only two quantum
trajectories whereas classically, if the electric dipole moments were
oriented at random there should be a continuous set of impacts on a

screen
1Ps)

MASER CAVITY
FREQUENCY wq

1
‘¢A> ALL

NI

NH3

Y

22

SLITS

Y V:\ | I |

N\

electric field €

~— v ——

This apparatus is a concrete example of a quantum mechanical
measuring apparatus. It transfers internal quantum degrees of freedom
into classical space properties. It is also a device to prepare the
molecules in the states S or A, or in linear superpositions of them

TELEFDM
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Reaction to an oscillating electric field

Interaction energy between the dipole and the field

o ) 0 &y cos(wt)
W = —DE cos(wt) = T (fo cos(wt) 0 )

leading to
wo/2 & cos(a)t)) |

=il (fo cos(wt) —wp/2

Here we have time dependent Schrodinger equation hence the standard

method does not apply anymore!!

Rotating wave approximation: Terms in a Hamiltonian which oscillate
rapidly can be neglected. This is a valid approximation as long as the
applied electromagnetic radiation takes place near the resonance with

an atomic transition, as well as the intensity is low

TELEEDM
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Reaction to an oscillating electric field

Time dependent Shrodinger’s equation

d , e (T0) = B[
ih— WD) = H |y (1)) _> ”"% (ﬁ§f§)=H (ﬁgg)

leading to
d
id—C: - %a(r) + & cos(wB(r)
d _
% = 2280 + £ coswnay
Consider the substitution
a(t) = a(t)e " "?

B=Tp el
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Reaction to an oscillating electric field

Time dependent Shrodinger’s equation

L d : ne (o) = Al
ih— WD) = H |y (1)) _> ’h% (ﬁ§f§)=H (ﬁgg)

The substitution leads to

i—- = (-0 + w)a(t)/2 + &o(1 + e “NB(1) /2

i— = (- w0)B()/2 + &o(1 + e (1) /2

with 0 = w — Wy

Using the rotating wave approximation, fast oscillations terms are
neglected in the above equations - solutions are analytically extracted

TELEEDM
’aris

_ _ Applied Quantum Mechanics, F. Grillot, EE270 it i |

N2 1P PARIS




Reaction to an oscillating electric field

Time dependent Shrodinger’s equation

L d : ne (o) = Al
ih— WD) = H |y (1)) _> ’h% (ﬁ§f§)=H (ﬁgg)

The substitution leads to

i—- = (-w + w)a(®)/2 + o(1 +¢ “NB(t)/2

i— = (- wo)B(1)/2 + &o(1 + ZKNa(t) /2

with 0 = w — Wy

Using the rotating wave approximation, fast oscillations terms are
neglected in the above equations - solutions are analytically extracted

TELEEDM
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Reaction to an oscillating electric field

Time dependent Shrodinger’s equation

L d : ne (o) = Al
ih— WD) = H |y (1)) _> ”"% (ﬁ§f§)=H (ﬁgg)

Then we get

d*a
d_g +Q(2)C~L’:O

o
7+Q()B:O
. 0 _1\/52 2
with O—E +§0

Consider the initial conditions

Bt=0)=0
Then we get
o .60 .
B(t) = —i 20 sin(Q¢)

)
a(t) = cos(Qot) + i 2_90 sin(Qp?)

(D)) = &) |a) + B(t) |B)

Applied Quantum Mechanics, F. Grillot, EE270




Reaction to an oscillating electric field

Probability of switching from Ato S

P(A — S) =| (Bly) *=| B®) =I B®) I

P(A_>S)= 532 ZSiHZ\/(w—wO) +§Ot
(w_wo) +Eo 2

with an oscillating electric field with frequency w applied from 0 to t

And with a static electric field applied from 0 to time t, we retrieve
as in pp. 198

S 2\/w§+§2t
———sin
w, +§ 2

:> Rabi’s formula (resonant excitation obtained for d=w-w,=0)

P(A —S) =




Reaction to an oscillating electric field
Probability of switching from Ato S

2 _ 2 2
Rabi’s formula PA —S)= S0 sin? \/(a) W) +5g

(w-w,)" +E&, 2

W =W
.. 1 max
Pa—s(t) = s1n2(§0 2) PASS
5 y -
0 2 t
& k.’ EO
d=w-wp,[0|>>E | 1ip, o)
2 T

Pa-»s(t) = %‘21 sin{d 3 i o g gy seey ipmoereeh

3 / 0 2'831 { Mo W

s
T e
>
o
17



Stimulated emission

Molecule in a state A with energy E, in interaction with an electric field

oscillating at w,

\ Pa->s(t) pour = m
. E

0 ) t _
E—z)t t—ﬂ/Eo\

- The field induces the stimulated emission of the molecule

- Then, the molecule yields its energy to the field. If the field is
confined in a cavity, the process is reversible

- The field at the outside the cavity is greatly amplified

Amplification by stimulated emission of radiation

MASER & LASER o
=S
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Maser & Laser

First Maser (C. Townes, 1954) First Laser (T. Maiman, 1960)
P=10-°W, f=24 GHz (microwave) —

Components of the first ruby laser

100% reflective
mirror
EIGHT-ELEMENT FOCUSER — Quartz flash tube
AMMONIA SOURCE ~

\ ’ K INPUT CAVITY
."g % e

/

LIQUID NITROGEN COLD TRAP

OUTPUT CAVITY

OUTPUT WAVEGUIDE

Polished aluminum Laser beam
reflecting cylinder ggo; reflective
mirror

INPUT WAVEGUIDE

CAVITY TUNING

_ A Applied Quantum Mechanics, F. Grillot, EE270 EHE
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4.
Electrons in solids
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Electrons in solids

The Kronig-Penney model demonstrates that a simple one-dimensional
periodic potential yields energy bands as well as energy band gaps

V(x)
7 A a=b+c
1= -
@ © @
07t > X
T
Bloch wave . Double periodicity
. IKX
(x) = ulx)e u(x + @) = ug(x)
T T e
k € L—Z,—EJ uk+%ﬂ = U

Bloch's theorem: The energy eigenstates for an electron in a crystal can
be written as Bloch waves i.e. the electron wave functions in a crystal

have a basis consisting entirely of Bloch wave energy eigenstates
ﬁiﬁi
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Electrons in solids

V(x)
A a=b+c
Vo + —
@ © @
0 > X
bO C

Consider the solutions of the Schrodinger’s equation in regions |, Il and llI

0<x<c W) =yi(x) =A™ + Be ' a’ = 2h_;;z E (1a)
. . 0
b<x<0 Wx) =up(x) = Ce?* + De™* g2 = h—T(E ~ Vo) (1b)

C < x<a l)l’(x) — QZ’III(-X) - C/ei,Bx i D/e-—i,Bx C/ - Cei(k—ﬁ)a, DI = Dei(k+ﬂ)a
(lc)

mEE
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Electrons in solids

Boundary conditions (continuity and derivatives x=0 and x=c)
A+B=C+D
aA—aB=0pC—-p8D
Aeiac + Be—iac _ Ceikae—iﬁ’b + Deikaeiﬁb

aAeiac . OtBe_iaC — ﬁCeikae_’Bb . ﬁDeikaeiﬁb

We can express the general solution as follows

2 | @2
cos(ka) = cos(ac) - cos(Bb) — ¢ 2;_ ; - sin(ac) - sin(Bb)

Consider the following conditions: We search bound states and assume

narrow barrier, and strong tunneling
Vo>E b<a,c~a |pblx1

' . Voab
;> cos(ka) = cos(aa) + Ps1n(cm) with P = i
aa h?

mEE
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Electrons in solids

sin(aa
cos(ka) = F(aa) with F(aa) = cos(aa) + P (aa)
aa
F(aa) _ 3n
i F(aa) 3 2
1 A
No solution in the / \
gray area
} >

Only allowed energies are those for which -1 < F(aa) < 1
Whenever F(aa) is outside the domain [-1, 1], there are no solutions
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Electrons in solids

Solving equation for k, we see the dependence of the energy and the
formation of allowed and forbidden energy bands

E:

/
.
&
F ] 5 7o
: % % 2 74 :
(aa) z z z Y
: : . g /
1 z ; s SRS
z s S0
3 p % A
: : O,
’ : [ ]
z : -
: G . :
: 2 :
r ’ 5
3 s :
6 :
g :
K s
27 3 an 5
a a a a

For k=0, we can find a non-zero energy as for a particle confined in a box

TELEEOM
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Electrons in solids

Solving for k we see the dependence of the energy and the formation of
bands. Notice that a gap opens in the energy spectrum at k = %n

E

E

2?7;1215’ — k2 Free electron

@lp PARIS




Section 6

Hilbert space, Dirac’s notations and matrix
mechanics

After Richard Feynman

For further information, read the supplementary material

Paris
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Ket vector

Introduced by . P. A. MDirac in 1926 ()
( go \ /
o | ” ‘¢>
\ ¢ ) \
¢(p)

The ket is a normed vector that is an element of
an abstract complex vector space e.g. the
infinite-dimensional vector space of square
integrable wavefunctions

TELEEDM
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Hilbert space

A Hilbert space £y is a linear vector space whose elements are functions
or vectors i) with a positive-definite scalar product

The dimensionality of the Hilbert space is the number of linearly
independent vectors/states needed to span it (may be finite or infinite)

Properties
@ Linearity: if [¢) and |¢) are elements of £ so is ay) + be.
@ Inner product: (1|¢) exists and (Y|@p) = (P|1p)™.
@ Every element [¢)) has a norm/length ||1|| such that (|1)) = ||4]|?

@ Completeness: every Cauchy series of functions in £ converges to
an element in &g

TELEEDM
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Hilbert space

The Hilbert space 52(0% b) is the set of all square-integrable functions
f(x) on the interval [a,b], i.e., f(X) such that

[ (@) f(z)dw < oo

Inner product in

b
($]¢) = / ¥ (2)d(z)de

Note the infinite dimensionality of the Hilbert spaces (evidenced by the
infinite number of energy eigenfunctions, which comprise possible

bases for these spaces)
[:2 (07 a’)

Ez(—OO, OO)
Infinite square well

Free particle
ﬁiﬁ
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Generalization of the 1st postulate

Every physical system can be represented by a unique Hilbert’s space SH

The state of a given physical system is described by a single vector
state (normed vector) of unit length in the system’s Hilbert space

9 (¢))

The Hilbert’s space satisfies the principle of superposition

Existence of Hilbert’s basis composed of eigenstates

Co(t)
[P(t)) < 01.(75)

TELEEDM
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Inner product

The inner product is defined using the braket notation

<'¢b"¢a>

-> linear with the second argument, anti-linear with the first argument

Co Do
[Ya) = ( & ) [Yp) = Dy | then (Yplva) =D DyCh

All acceptable vectors for a complete description of the quantum
system must be normalized

n

TELEEOM
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Bra vector

The bra labeled vector is obtained by forming the row vector and
complex conjugating the entries

Dg

|¢b>: D-l é <¢b|=(D67D>{7)

Inner product

wbwa ZD*Cn

<¢b|¢a> — (DS ; T g us3) le

Braket = complex number

N2 1P PARIS




Matrix mechanics

An operator A is described by a matrix [Ap,n] acting in the Hilbert’s
space basis |¢p,)

Apn = (opl (Alon)) = (dpl|Al¢n)
R / T \Column

vector Sq ua_re vector
matrix

Operators are Hermitian (or self-adjoints) if and only if

i, Y % o ~
[ATpn = ([Alnp)” wmp A= Al
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Matrix mechanics

Examples of Hermitian operators

o A 5 D L34
Z, pr, A=\ 5 _g; 1

Spectral theorem: a Hermitian matrix is diagonalizable and as a
consequence it is possible to find a Hilbert’s basis composed of

eigenvectors

A|¢n> = an|n) such as <¢p|¢n> = Op.n

All eigenvalues of Hermitian operators are real. Therefore, (by postulate),
all operators for physical observables are Hermitian (because measured
quantities are real numbers). Some subtleties persist with Hilbert’s

space with infinite dimensional case

@lp PARIS




The Hamiltonian

——> Energy operator: Hamiltonian H
hermitien

P

Physical quantity: energy E

As in classical physics, possible values for the energy will depend on
the physical configuration of the problem

=» Particle of mass m in a potential H= 2p_m + V(2)

=» Dipole in an external electric field (E)

—

A=-D E
\ Potential energy

=% Dipole in an external magnetic field (‘B)/ of Interaction
B

~ /_\’
H=-ji-

TELEFDM
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Projection operator

— Pn — |lﬁn> (lﬁn| is an operator (not closed braket)

= P, = |y,) (Yy| isaprojector
P2 = (W) Wal)* = W) Wl Wil = W) ] = P,

=» P, =\, (,| isaprojector on state W)
= (Ynl)) i)

Here the operator projects a vector onto
the nth eigenstate




Projection operator

Wal=(0 ... 0 ()0 ... 0)
(0

0) 0 ‘
0
0
° 0
0
\O} \ )




Completeness relationship

If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity

il \

[l
~>

D ) Wl = 1

! 1)

F= Wn) W

W) = > WaldYWn) = > Wond W) = [Z ¥n) <¢nl) )

TELEEDM
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Completeness relationship

If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity

i1 \

1
~>

D ) Wl = 1
n 1

1)

If the eigenvalues indexed by n range over a continuous set of values,
the summation becomes an integration

mEET
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Generalization of the 39 postulate

In any measurement of the observable A associated with operator A4 , the
only values that will ever be observed are the eigenvalues, which satisfy

the eigenvalue equation

Altpy) = an [t ) (Pp|¥m) = Gpn

The result of a measurement is one of the set of eigenvalues (a,) of A

The probability of measuring eigenvalue (a,) is given by

P(an) — ‘<¢n|¢>|2 Non degenerate

Right after the measurement with result (a,), the system is projected

onto the vector subspace |v,,)
This means that a second measurement performed immediately after will

TELEEDM
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Generalization of the 39 postulate

In case of degenerate eigenvalues the dimension of the Hilbert space is

(an) = gn 22
A

wn,rn> = dp |wn,rn> with 7, =1,... > 8n

The result of a measurement is one of the set of eigenvalues (a,) of A

The probability of measuring eigenvalue (a,) is given by

Plan) = ) |,

After the measurement A
Py )

A ~
| Py ) || Palt))
_ _ Applied Quantum Mechanics, F. Grillot, EE270 EHE
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Infinite dimensional case

m) A “good operator”: Hamiltonian of the harmonic oscillator

H = s e e T Discrete spectrum : En = hw (n + 1/2)
2m dz 2 neN
Eigenfunctions (Hermite polynomials) e™% /20" ge=* /20° . _ /& / mw

Included in Hilbert space of square-integrable functions

mm) A “delicate operator”: the momentum

. hd |
Poe =~ - Continuous spectrum Rk > Set of real numbers
Eigenfunctions : €

Not included in Hilbert space of square-integrable functions

0@ 1P PARI




Position and momentum space

\M=/®M@M=/@W@M

<$‘¢> = w(m) is the value of the wave function at position x is
simply the projection of the state |1)) onto an

eigenstate |x)

| <£E |w> |2 Probability of measurement of x

¢(p) — <p|¢> Probability amplitude for measurement of p

Inner product

(91} = I [ 1o} (al dz)p) = [ (o) (aly) do = [ 6" (@pb(a)do
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Position and momentum space

Conversion between 1 (x) and ¥ (p):

6(o) = Glv) = [ (ola) (aly) do

- d
S

Similarly 9(x) = [ €%/M)(p)

The conversion between posmon and momentum space is
mathematically a Fourier transform because

(z|p) = = exp(ipz/h).

l
=

TELECOM
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Discrete vs continuous

A an> — Qp |an> with discrete eigenvalues Qn,
B bn) = by |bp)  with continuous eigenvalues by,
Discrete Continuous
(OO} = Oy (b |bp) = 0 (b, — by)
Zm |am) {(am| =1 fdbm o) (b | = 1

@) =)0 lam) (am|a) 18) = fdbm bm) (bm|B)
> om | {amla) 2 =1 [ dbm| (bm|B) |2 =1
(@ | A ) = @aiOmm (bin| B|br) = bpd(bp, — by)

5mn Kronecker delta function 5(bm — bn) Dirac delta function




Commutators

Commutators between two operators are defined as
A, B] = AB — BA
[Aa B] — _[Ba A]

Two operators commute (or are compatible) if [ 1217 B] — () Heisenberg

To figure out commutation relations, apply the operators on a test
function and look at the end result (sans test function)

Example: the canonical commutation relation [Cf?, ﬁ] = il

Note that if two operators commute, it becomes possible that the same
state will be an eigenfunction of both operators. Then the two
corresponding observables can be simultaneously specified for that
state. The eigenvalues of the observables are basically “good quantum
numbers” of the state
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Commutators

Commutators between two operators are defined as
A, B] = AB — BA
[Aa B] — _[Ba A]

Two operators commute (or are compatible) if [ 1217 B] — () Heisenberg

To figure out commutation relations, apply the operators on a test
function and look at the end result (sans test function)

Example: the canonical commutation relation [Sf?, ﬁ] = il

Generalization of the Heisenberg’s uncertainty principle

1 5 o
Aalb 2 = | JllA, Blly) |

TELEEDM
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Time evolution

Evolution of the state vector |¢ (%))

—dlp(®)
dt

= H|y(t))

P

If eigenstates of the Hamiltonian H are known (not time dependent)

H|¢n> = En|¢n)

We can write the following decomposition

() = ) cnlt) Wrn)

n
.En(t—l‘o)

() = ) Waldto)) €™ T ) with  Calto) = Wul(t0))

TELEEDM
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Propagator

En(t—t

W) = > Walti)) €T i)

W) = | T ) Gl | W@0))

L ' ]
U(t—to)
(50 0o
R O _iEl(t—to) O
U(t,tg) = € & oy
. Er (t-1p)
0 0 e T
; )




Time evolution with propagator

In absence of any measurement the evolution of the state vector |1(t))

is given by
d
(b))
dt

[4(t)) = U(t — to) [ (to))

The Hamiltonian generates the time evolution of the vector state

= H|y(t))

ﬁ(t — to) is a unitary operator such as ﬁUT — (}'Tﬁ = f

with Ut,t9) = exp(—lH(t _ tO))

h

.

TELECOM



Summary

Wave Functions Vectors Dirac Notation
b1
b2
P )
bn
P (b1 b5 - by) (Y]
P(x1)
: -
b2
S ¥*pdi (G on) | (Pl
by
b1 c1
A b2 C2 N
Ay = ¢ Al . | = Alp) = [9)
bN CN
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Summary

Wave Functions Vectors Dirac Notation
b1
A b2
(A) = [*Adgdr (bt b3 by) [4] (Y| Alp)
bn
ai 0 0
A 0 a9 0 A
Adn (:I:) =~ an¢n(m) in ¢, basis A |¢n) = Qn |¢n>
0 0 anN
0
i |
0

Applied Quantum Mechanics, F. Grillot, EE270
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Section 7
Spin angular momentum

The Stern-Gerlach experiment

: PHYSIKALISCHEN VEREINS FRANKFURT
VON OTTO STERN UND WALTHER GER
FUNDAMENTALE ENTDECKUNG DER RAUMQ
- DER MAGNETISCHEN MOMENTE IN
1 AUF DEM STERN- GERLACH-EXPERIME

TELECOM
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Principle and interpretation

Applied Quantum Mechanics, F. Grillot, EE270
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The Stern and Gerlach experiment

1922: Stern and Gerlach (Silver atoms)
1927: Philips and Taylor (Hydrogen atoms)

Walter Gerlach & Otto Stern

The experiment demonstrated that the spatial orientation of angular
momentum is quantized. In the original experiment, silver atoms were
sent through a non-uniform magnetic field, which deflected them
before being detected on a screen. The screen reveals discrete
points of accumulation rather than a continuous distribution, owing
to the quantum nature of spin

This experiment was decisive in convincing physicists of the reality
of angular momentum quantization in all atomic-scale systems

0@ 1P PARI




Refreshers

Charged particle
o Lorentz’s force
P v
b —> —
_ —
q P F =qg(v X B)

Magnetic dipole on a current loop
Magnetic moment

A —
=¥ ’LL .
B i i=iSu

Torque
9

T © = 7
z I'=uxaB
-> rotation always in direction to align y with B field

TELEEDM
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Refreshers

Potential energy of interaction

W = _ﬁ°§= - Z MaBa

a=X,y,<

- The magnetic moment of a compass is such that the corresponding
potential energy is always minimized

Corresponding force
-2 -2
F=-VW= Z Uqa VB,
aA=Xx,y,Z
Angular momentum of an electron in an atom (orbital motion)

9
9 9
TELECOM
Paris

L=rXp
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Orbital angular momentum

Consider a semi-classical description of the hydrogen atom where

electron (charge <0, mass m) revolves in a circular orbit
around the proton (uniform motion)

Orbital angular momentum

- _ q Gyromagnetic

/j = yolL with Yo = 5— ratio

The gyromagnetic ratio is negative for an electron

N2 1P PARIS




Larmor precession

- = -
Uniform magnetic field: 1 = ﬁ X B and Zﬁ= 0

px(t) = po cos(wot + ¢)
py(1) = py sin(wot + @)

W = —u,B energy conservation

The magnetic moment rotates about the magnetic field vector, describing
a cone around the axis of the applied field




The Stern-Gerlach experiment

A beam of silver atoms is passed through an
inhomogeneous magnetic field along z axis.
This field would interact with the magnetic
dipole of the atom and deflect it

In classical physics, a continuous
distribution, vertically orientated along z axis
was expected due to the random orientation
of the magnetic dipoles

wWo
Larmor frequency 2— =1GHz withB=01T
T

< Uy >=< py, >=0

F=-VW= Z ,uav)Ba ~ ,uZV_;Bz

a=X,y,2 TELECOM
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The Stern-Gerlach experiment

po <0

interpretation!




Orbital angular momentum

The orbital state of the electron is described by its wavefunction W(x,y,2)

Owing to the invariance with respect to any rotation, the wavefunction
of the ground state level is a radial function such that

Y3, = fr) = Ry

1s orbital (Hydrogen atom)

Lwy=0

The orbital angular momentum can not explain the result observed by
Stern & Gerlach because the value of the orbital angular momentum is
none for the ground state level which means that no deflection should

be observed in the experiment

TELEFUM
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Spin- "2 particle

1924: Pauli postulated that the electron has a new
quantum degree of freedom (or quantum number) with two
possible values and with no classical equivalent

3

1925: Uhlenbeck and Goudsmit postulated
the existence of a new intrinsic property of
particles that behaved like an angular

momentum

ud \( t
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Spin- "2 particle

1924: Pauli postulated that the electron has a new
quantum degree of freedom (or quantum number) with two
possible values and with no classical equivalent

&

1925: Uhlenbeck and Goudsmit postulated
the existence of a new intrinsic property of
particles that behaved like an angular

momentum

«d ‘\ ﬁ

The existence of spin angular momentum is inferred from
experiments, such as the Stern-Gerlach experiment, in which
particles are observed to possess an angular momentum that
cannot be accounted for the orbital angular momentum alone

TELEEDM
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Spin angular momentum

S i h
2
h
2
h q
o= 3m
h
Two possible results S ; = ii

The Stern-Gerlach apparatus allows to measure the observable S,
that is the projection of the spin S along z axis

D SN | At ot
@lp PARIS




2.
Constructions of the Observables

L
Bz
L
il
|l
S+
@
S

L
N

L
=

|l

=t

o)
<




Three components for the spin

In contrast to orbital angular momentum, the spin DOES NOT
correspond to rotation around a geometric axis. It is an intrinsic
property of quantum particles, but we will se that the effects are angular
momentume-like
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Construction of the operators

Hilbert’s space describing the spin of the electron Q)

A h .
Observable: S, Eigenvalues: ii => dim[Q,in] = 2

spin

Minimalist assumption dim[€2,;,] = 2

A

Consider |+), and |—), the eigenvectors of S,

S: 14y, = £5 |4),

{|+>Z , |_>Z} is a basis of Qspin

I ) Z
2 1



Quiz 5

What do you expect after the second Stern-Gerlach apparatus?

1. One spot

2. Two spots

3. Does not make sense
4. |1do not know

TELECOM
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Quiz 5

What do you expect after the second Stern-Gerlach apparatus?

1. One spot

2. Two spots

3. Does not make sense
4. |1do not know
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Quiz 6

What do you expect after the second Stern-Gerlach apparatus?

1. One spot at the center

2. Two spots shifted along z-axis
3. Two spots shifted along x-axis
4. |1do not know

TELECOM
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Quiz 6

What do you observe after the second Stern-Gerlach apparatus?

1. One spot at the center

2. Two spots shifted along z-axis
3. Two spots shifted along x-axis
4. |1do not know

TELECOM
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Construction of the operators

(1) S’x iIs an observable

In the basis {|+),,|-),)

_h Oy 18;:: ax,YXER
"2 BxeC

Applied Quantum Mechanics, F. Grillot, EE270
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Construction of the operators

(1) S’x Is an observable

| o _Dfax ) mereeE
In the basis {|+>z ) |_>z} Sx =3 ( x) By €C

>

2 A h
(2) As for § , the eigenvalues of S, are: S,|+), = -|-E

Tr{ } (ax+yx)—0 > ax+y,=0

2
det{ﬁ } = ayYx— | Bx |2 h4 :> | Bx |2 —xYx— =1

N2 1P PARIS




Construction of the operators

(1) S’x is an observable

| A % @, * @y, Yx €ER
In the basis {|+>z ) |_>z} Sx =3 ( IBx) By €C

(2) As for S’ the eigenvalues of SA’X are: S, |+), = ig |+)
Tr{ } (ax+)/x)—0 > ax+y,=0
\ , W 2 _
det{Sx} = ayyYx— | Bx "= _Z => |,8x | —AxYx— = 1

(3) For the state |+)Z measurement of S’x produces two identical spots

1(h 1 (-h A h
<sex=3(3)e3(7)=0 =G =0

D ax=0 =0 |pkI=1
_ _ Applied Quantum Mechanics, F. Grillot, EE270 ﬁ%
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Construction of the operators

~ h{ 0 e
Sx = 2 (ei¢x 0 )

Consider the new basis {|+>; 5 |—>;} with

|+, = e¥Px/2 |4y,

(£ = (£l e

:> \Z <_|§x|+>,z —7 <_|§x|+>z e_i(bx = =

In this new basis we have (for simplicity let us call it {|+>Z . |—>z} )
. h{0 1 n(lt o0
S,y=—= S;==
2\1 O 2\0 -1
. 1 1
And, Syl£),==-[%), =% 1 =) = @ -1
_ _ Applied Quantum Mechanics, F. Grillot, EE270 g
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Construction of the operators
" h ( 0 e_i(by) Z <+|§y|+>z =0
X <+|§y|+>x =0
n 1 Af0 e\ 1 (1
e CHSYIH = 5 (1 1)3 (ewy 0 )ﬁ (1)

A hi T
x (HISy[H), = 5 €OS Gy =0 W) ¢y= ii
T

By convention and to match the experiments, we take: ¢y = =

2
. B[00 —i
Sy‘i(i o)




Pauli matrices

Pauli matrices for spin "z-particle

. Hh(0 1\ & _RB0 =\ L &
Sx‘i(l o) Sy_z(i 0) 2= 5

with S2 =524 524+ 52

Note that these three observables do not commute

b )

E> L
R
A W
= o

|l |l
S OS
Uy W

< o

Applied Quantum Mechanics, F. Grillot, EE270
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Summary

Pauli matrices for electron spin description

§. =1
2

no 1
1 0O

) 5

with S22 — Sg

0 -\ . &
(i 0) )

b )

02 02
1215

Same commutations relationships than the orbital angular momentum

ay A\

:Sya SZ]
1S.,8,]

S, Sy = inS,

ins |
ins

A A

L, Ly = ihL,

Ly, L] = ihL,
L, L) =ihL,

- The spin can indeed be seen an additional angular momentum

TELEEDM
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Quiz 7

What do you observe after the third Stern-Gerlach apparatus?

1. One spot
2. Two spots

TELECOM
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Quiz 7

What do you observe after the third Stern-Gerlach apparatus?

1. One spot
2. Two spots
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The observable S .iZ

. h{0 1\ o R(0 -\ . _h
Sx:i(l 0) Sy‘i(i o) 527

( sinfcosp )
=4 sinfsing
| cosd )

Spherical
coordinates

St =8 ux+Syu, + S u,

—ﬁ'g Ol_l_ﬁ.g. O—i_l_ﬁ 910
_251n cospl | 2sm sing( . 2cos 0 1

5, B cosf e ¥sind h
Sit==

e¥sinfd —coséh ) (SL_{) [+)z = ii EF

CONL



The observable S .iZ

- 0 .. 0
0

Vo= —o ¥/2 gip =
=) >
Measurement of

Sit=8,cos0+8,sin6

Similar to Malus’s law for light

for a system prepared in polarization but here for the spin

quantum state |+),

=

Po(+h/2) =lg (+]+), P= cosz(

N D
s e

Po(=1/2) =z (~|+), P= sinz(

|
=

[ (]
b
P =
.




3.
Towards a complete description of the
Stern-Gerlach experiment
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Tensor product of two Hilbert spaces

Consider a quantum system (a) represented by an Hilbert space 5a with
basis {|a;, )}
Consider a quantum system (b) represented by an Hilbert space gb with

basis {|3,)}

If (a) is in state |a,,) and (b) |3, ) then the state of the total quantum
system is

o) QT@ 1Bn) = |am)|Bn) = |am,Bn) = |m,n)
Tensor product
(@m| @ (Bn| = (am|{Br] = (@m,Bn| = (Mm,n]

Tensor product vector space Sa X Sb




Tensor product of two Hilbert spaces

Consider a quantum system (a) represented by an Hilbert space 5a with

basis {|a;, )}
Consider a quantum system (b) represented by an Hilbert space gb with

basis {|3,)}

General expression of the state ‘¢> c ga X gb

) = Z Cnm ) @ |Bm)

n,m

Example: 2D quantum harmonic oscillator

Y(x,y) = Zcm,nwm(iv)@n(y) ) = Zcm,n|90m> R |on)

TELEFDM
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Tensor product of two operators

Consider an operator A acting on Hilbert space 50,

Consider an operator B acting on Hilbert space gb

Tensorproduct AQ B or AB

(A® B) |am) |Br) = (Alam))(B|By))




Back to the Stern-Gerlach experiment

gH = gex@ gin‘ with Eex. = EQ (Rg)
|¢> — Cn a|90n> X |0'> |§0n> basis of 52(R3)
n,o= :t

atlos) a4 l? +Ja_|? = 1
W) =aylps) ® |+>z +a_ |90—> ® |—),

Linear superposition between

(a) a wavepacket go_l_( ) associated to a magnetic state |+).
and
(a) a wavepacket ©¥— ( ) associated to a magnetlc state _>z

éfig;lPPAnls




Time evolution

~2
H — Iin - Bz »
2m i () ® A

Applied Quantum Mechanics, F. Grillot, EE270
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Time evolution

52
A P & ot "
H=—QILux— B, 2
5 @ Lint (7) ® fu
~D
P o "
Hlp) ® |£), = %I@ ® |£), — B(F)|p) ® fiz |£)-




Time evolution

~2
= p . = ”
H=— Im_Bz 4
5 © fint (7) ® [
A2

A2
H, = éi + Vi(P) Vi(r) = FuoB.(T)
m




Time evolution

~2
2m R (") ® £

Hlg) ® |£). = o—I¢) ®£). = Bo(F)|e) ® (po)|£)-

= (I:Ij:|90>) ® [

)
1. =2 v, Vi (F) = FuoB.,(7)
2m

A

U(t,t0) = exp (—iI:I(t ~ o) /h)
Ut to)l¢) @ %) = (Ux(t, o)) @ |)-

with - U4(t,10) = exp (~ifL.(t - 10)/h)
_ Applied Quantum Mechanics, F. Grillot, EE270 ig




Entanglement
Consider the factorizable
[U(t)) = lo(to)) ® (a|+): +a-|-):) state (no correlation)

() = arU(t, to)|e(to)) ® |[+)- + a_U(t, to)lo(to)) ® |—)-

= a4+ U (t,t0)|p(to)) ® |[+)= + a_U—(t, to)|p(to)) ® |-).

Time-evolution of a Time-evolution of a
wavepacket with V., (1) wavepacket with /_(7)

Entangled quantum state

) = ar e+ (1) @ |+), + a-lep-(1) ® |-),

After the interaction with the Stern-Gerlach apparatus, there exists a
direct correlation between the position of the atom and its magnetic state

TELEFDM
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Measurement in quantum mechanics

Copenhagen
interpretation

|¢(t0)> Measurement
at|le(to)) ® |+)- o4 (1)) ®|+)-
+ OR
a—||p(to)) ® |-)- - (1)) ® [—)-
Time-reversible Time-irreversible

Measuring the position gives a direct measurement of the spin

0@ 1P PARI




Many worlds interpretation of quantum mechanics

The observer is included into the description of the state vector

The 3'd postulate (measurement) is not invoked anymore

TELEFDM
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Many worlds interpretation of quantum mechanics




Many worlds interpretation of quantum mechanics




Spintronic

Giant Magneto Resistance (1988) involves ,,,

small changes in magnetic fields creating

major differences in electrical resistance '/r
z;lt‘)ertFert

Low resistance High resistance |

In a magnetic material, the scattering of electrons is driven by the
direction of magnetization. The GMR arises because of the spin of the
electron that induces a magnetic moment

- Better read-out heads for pocket-size devices

N2 1P PARIS




Spintronic

MRAM uses magnetic storage elements instead of electric used in

conventional RAM

: Tunnel
Ferromagnetic — " barriers
electrodes

II] "

" 0 "
Low resistance state High resistance state

“Bit” lines —
\

“Word” lines o

" oll

read the information stored in

Tunnel junctions are used to
Magnetoresistive Random Access Memory, typically a ”’0” for zero point

magnetization state and “1” for antiparallel state -
ﬁiﬁi
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Nuclear magnetic resonance

Static magnehc field BO Amplified signal Signal vs
D, 4 Vs time frequency
@O
™ WI’ o Fourler
RF excitation ’ | Prloton' — time (MONSIOM __ frequency
to raise proton o ;? i’:l‘t:ggeive 3 Proton NMR signal
spins to upper 9 at only one frequency
level. bacause of the
constant magnetic
field.

F’Wf TH ™) L B\

Proton - time Transform — frequency
RF excitation | | B

relaxation Proton NMR frequency
2:1%2:%5 ?2 ded Added ?raffj;ledma signal received varies with position
cover resonance | T ole o0 Ba because of the gradient
at all field values magnetic field.

\
Felix Bloch Edward Mills Purcell

A RF signal induces a transition between spin states. This "spin
flip" places some of the spins in their higher energy state. If the RF
signal is then switched off, the relaxation of the spins back to the
lower state produces a RF signal at the resonant frequency
associated with the spin flip

:f:.;,f:;lppAnls




Nuclear magnetic resonance

Nuclear magnetic imaging

Paul C. Lauterbur Sir Peter Mansfield

Chemical spectroscopy
Spectrum of ethanol CH3-CH2-OH (1952)

Absorption

4

Applied Quantum Mechanics, F. Grillot, EE270
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Section 8

General description of the angular momentum




1.
Orbital angular momentun

L=rxp

Applied Quantum Mechanics, F. Grillot, EE270
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Orbital angular momentum

) L:E:Aﬁz_éﬁy
L=rxp Ly = 2py — Zp.
Lz — TPy — YPx

A

L, Ly| = [96- = 2By, 2Pe — -]
= Y|P, 2Pz + Dyl2,D:]2
= ih (—(ps + &Py) = ihL,
[iy, iz] — ihi, [L L,L,] —ihl, LxL=ihl

It is not possible to simultaneously measure the different cartesian
components of the orbital angular momentum operator

[ (]
s | B
P =
.
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A

L? operator

iy (i b)) = —ibink, — Lini,

_|_

1082 = [Lo L] Lo + Ly [BaB2) = 0 Lo + Loin,
[ +
0

And we also have [ix, .Z\-/2:| = () [Ey, £2] =0

It is possible to simultaneously measure the norm of the components of
the observable

TELEEDM
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2.
Algebraic theory of the angular
momentum

Elie artan
1869 - 1951
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Representation of a rotation in Hilbert’s space

Consider a rotation & around the z-axis on a wave
function ¥(x,y, 2)

87
Rz,a

2’ = xcosa + ysina ¥ R, oY
{ vy = —xsina + ycosa
2 =z

Yy (z,

/ /

L,Y)

(e

Z\/

S w

v

\

Reat| (@,9,2) = v(@, )

= ¢(xcosa+ysinoz, —xsinoz—l—yCOSOé,Z)

TELEEDM
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Representation of a rotation in Hilbert’s space

Consider a rotation @ << 7 around the z-axis
|:Rz,oz¢:| (x,y,z) = Y(rcosa+ ysina, —rsina + ycosa, z)

~ (T + ya, —za+ Y, 2)
- — 202 oY
w(ﬂ% Y, Z) o O‘% (xﬁy _ yﬁa:) w(xayv Z)

e A e

L, Ly, L, are the infinitesimal generators of the rotation group

TELEEDM
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Invariance and commutation

Consider the following system with a rotational invariance

¥(to)) 6 ed W' (to)) = Rl (to))

tl,to Ul(ts,to)
5 Q W' (1)) = Ulta, to) Rl (to))
t1,t0)|¢ to))

.

TELECOM



Invariance and commutation

Consider the following system with a rotational invariance

V(to)) e q& Y/ (to)) = R|w(to))

tlatO tlvtO

6 Q W' (t1)) = Ulty, to) RIY(to))

= RU (t1,t0)|v(to))

t17t0 W tO
idt [R,U(tl,tg)] =0
out (¢ + dt) = (t) — - H(t)
then [A](t-|-dt7t):f thﬁ [R,H] =0

TELECOM
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Invariance and angular momentum

Rotational invariance HR,, = R, ,H forany z and «
This is true under small angle approximation

Rz,am<f gﬁ) ~ Al =i

[aL)-0 [mL)-0 [A.L]-c

We can search a common basis to H, L? as well as to one of the

cartesian coordinates of [..

A A

- We usually consider {H, L? jlz}

TELEEDM
aris

mEE

N2 1P PARIS



Eigenvalues of {/2, /]

W2y = > (@lJadalty = D [Jal$)|F >0

=02 ad—I,Y,z

1G+D)

Bijective function

Let us assume the following eigenvalues

Py =jj+ ety JERT
T ) = mh ) m € R

T 2
gj,m is the Hilbert space of J2 and J, with eigenvalues ](] + 1)h

and mh

TELEEDM
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Eigenvalues of {/2, J.|

The two observables {jz, fz} share the same eigenstates

T2y = j(j + DR )
T W) = mh )

j is called angular momentum quantum number. It must be integer or half-
integer j=0,1/2,1, 3/2, 2, etc.

For a given value of j, m that is called the magnetic quantum number can
only take on integer values between -j and +ji.e., m = -, -j+1,..., j-1, ]

Only discrete values of angular momentum j are allowed

Let us prove this by using the algebraic theory developed by E. Cartan

TELEEOM
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Operators J, and J.

Consider the following operators (see the auantum harmonic oscillator)

Jo=Je il (J.)T = J_  Notan observable
We also know the commutation relations
[J2,7.1=0 ana [Jp,Je] = +0J,
J_J. = (s =il +idy) = T2 + J; + iy, J]
J_Ji =2+ J2 -,
J_J. = J* - J,(J, + il
We can also demonstrate
JoJ_=J* = J,(J, - nl)
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Action of J, and J.

) € Ejom ji Wy ?

JT Wy = L J* )y = j( + DR T, W)




Action of J, and J.

) € Ejom ji Wy ?

FIoWwy = T2 W) = j(j + DR J, 1)
I W)y = (Jody + [y, JD) )
T I W) = (mhd, + L) )
J I )y = (m + DaJ, )
WD S € Ejmrt o Jel) =0
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Action of J, and J.

) € Ejom ji Wy ?

JPI_ Wy = J_J* ) = j(j + DR*J_ )




Action of J, and J.

) € Ejom ji Wy ?

FI_Wy = J_J Wy = j(j + DR*J_ 1)
JI_ Wy = (J_J + [Jz, J-D) o)
JJ_ Wy = (mhJ_ — hJ_) )
JJ_ )y = (m — DRJ_ )

A\ A\
W Jwye Ejmor o ) =0
_ _ Applied Quantum Mechanics, F. Grillot, EE270




Norm of J_. i)
) € Ejom with Yly) =1

| T W) 1P= (| J_J )
| T4 ) = Wl J? = J(J, + BD)lw)
| T+ ) IP= [ + 1) — m(m + 1)]A°




Norm of J, |y/)
W) € Ejom with - (Pl =1

| T+ oy (P= lJ-J Iy
| T+ ) = lJ? = J(J; + RD)ly)
I T+ ) IP= [i(j + 1) — m(m + 1)]A°
I J- 1y P= il -l
I J_ ) IP= WlJ? = J(J, — mD)ly)
I - ) IP= [j(j + 1) — m(m — D]A°




[T |9)|[> > 0= m(m+1) <j(j+1)

What values for m and j?

= —J7J—1<m<

= —j<m<j+1

‘ —7<m <

In summary
V) € Ejm
TP = (5 + 1) — m(
JL )| =0 if m=j

Applied Quantum Mechanics, F. Grillot, EE270




What values for m and j?

Applied Quantum Mechanics, F. Grillot, EE270
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What values for m and j?
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What values for m and j?
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What values for m and j?
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What values for m and j?

AN eN m+N=)
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What values for m and j?

™m

X )
%

AN eN m+N=)
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What values for m and j?

AN eN m+N=
IN'eN m—N'=—j
29 =N + N’

27 €N j—méeN

1 .3
cl0,2,1,2.2, ...
jE{ 729 727 }

me{—j,—j+1,....5}




What values for m and j?

AN eN m+N=
AN’ e N m—-N'=—j




What values for m and j?

AN eN m+N=
IN'eN m—N'=—j
29 =N + N’

27 €N j—méeN




What values for m and j?

AN eN m+N=
AN’ e N m—-N'=—j

29 =N + N’

27 €N j—méeN

1 .3
cl0,2,1,2.2, ...
jE{ 727 727 }

me{—j,—j+1,....5}
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Eigenstates of {J2, J,]

Consider the standard basis B m)}

j+|n7j7 m>
/3G + 1) —m(m + 1)

dim Ejm > 1 n, j,m+ 1) =

J?|n, 3,m) = j(j + 1)A%|n, j,m)

J.|n, 3, m) = mh|n, j, m)

1.3
1€40,-,1,2,2,...
efogprpn-|

me{—j,—j+1,....5}

j:l:lnaja m> —
Vi(j+1) —m(m £ 1)hln, j,m £ 1)
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3.
Application to the orbital angular momentum

L=rxp

L x L =ihL
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Operators in spherical coordinates

Using spherical coordinates we can write

0
[ Zoﬂyb} (7,0, ) ¢(r,9,¢—a)z¢(r,97gp)_a£
> N oA . B9
Rz’ (I - %L ) Lz¢(r’9’ SO) — ;@w(’r,%%@)

Expressions for other coordinates

- (. 0  cosp O

wa(ra 9) 90) =ih (Sll’l@% + tan 0 %) ¢(T7 9) QO)

. iy 0 sinp 0
Lyy(r,0,¢) = ih (— cos ozt g 890) P(r,0, )
L+(r, 0, ) = he™™ (iaae + i cot 9—) W(r, 0, p)

. 1 0 0 1 0?
2 _ _ 32 -
L w(ﬁ 07 90) - h (Sln 0 86 Sln 089 Sln2 9 8902 ) w(’n 9’ SO) TELECOM

l
=



Radial and angular functions
L2 (r,0,¢) = L+ DE*P(r,0,0)  L.p(r,0,p) = mhap(r, 6, )

1 o . 0 1 0°
N (Sine 00 Sme% g sin2 @ 3902) (1, 0,0) = L(L+1)(r,0, )

0
_i%@b(’ra 07 90) — m¢(ﬁ (97 (70)

Note that the radial variable r is not involved in the differential equations
An eigenvector of {L2,L, } is such as ¢(7“> 0, 90) = R(T)Y(Ha 90)

o0 T 2m
() = /O R(r)*r2dr /0 /O Y (6, )| sin dbdsp
2'1 2'1




Eigenvalues of {L, L]

) oY (6
L,Y(6,p) =mhY (0, p) = ég; 2 =1mY (6, )

Y(0,¢) = F(0) exp(imep)

But : Y(0,p+27)=Y(0,p) = m enter = { integer

¢ € N
me{—L,—0+1,..,/0}

TELEEDM
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Spherical harmonics Y} (6, ¢)

Yo (6, ) = Fom(8) exp(ime) ‘

m = —/ E_Yg,_g(e, 90) = E_Fg,_g(e)e_ww =0

A

L _ is afirst order linear differential operator = unique solution

We can prove Fg,_g(e) x sin® 0 Ye —¢(0, p) x sin? Qe ¥

Using a recursive relationship and using L., we get

£+Ye,m(97 90)

Yem+1(0,0) = h\/ﬁ(f +1)—m(m—+1)

TELEEDM
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Geometrical representation

Radius of sphere
L= a1 + 1))12

Fig. 11.3 Geometrical representation of quantized angular momentum for a state with [ = 2. The 2z
component of angular momentum is quantized such that L, = m# where integer m has values =l <m < l
One may think of the state existing with indeterminate values of L, an L, at the bisection of the

(Lz, Ly) plane that passes through the quantized value L, = mh with the sphere of quantized radiu
L = n(l(L +1))Y/2.

TELEFDM
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Spherical harmonics Y} (0, @)

F1,(0) is areal function with [— | m | nodes in the interval 10, [

VY : (0,¢) = Y (8, ¢) € C,Hcem}

. Y(Q, 90) — Z Cﬁ,m}/ﬁ,m(97 90)

L.m

Along the meridians, the number of
nodes allows to determine | when
varying the polar angle

TELECOM
Paris
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Section 9

The hydrogen atom




Introduction

Spectrum with discrete lines (Rydberg, Balmer)

_— .

1 Ry ( I > ny, No : positive integers
A ny  n3 Ry : Rydberg
Planetary models (Perrin, Rutherford)
will fall onto the

The classical physics predicts that the electron
nucleus because a moving and accelerated charge radiates

-> Bohr: only certain orbits are allowed

TELEEDM
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Bohr’s model

2 2 o2
Consider a circular trajectory g — 6_ => mevz -
r Pl r
L 2 _ q°
w e =—
— drey
(V)
Quantization of angular momentum
. B _ B
~q L, =rm,y =n i = 1, 2 i
Le® _ 0wl a the fine-struct tant e ]
Up = —— =a— W/ « the fine-structure constant o = — ~ —
" nh n he 137
nh ik
Tn = = n2a1 w/ a; the Bohr radius 41 = 5~ 0.053 nm
MeUy, Me€

mEE
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Bohr’s model

Ea 1 62 5
_ 2 . I
o+ ... Total energy E, = 5MeVn = ST
g = 4 4 h2
By= =2 _x136eV
n = 3 2h Qmeal
B @ e
1
\AAAAL n — 2
ny Photon energy associated to the transition n; — na2
1 1
hy = E] ( 5 2)
ny 1y
The model perfectly predicts the different
13,66V ., — 1 €Nergy levels but remains incomplete at the
microscopic level (quantization not justified)

mEE
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The Hydrogen atom in quantum mechanics

Two particles under the Coulomb interaction: proton + electron

As in classical mechanics, we can introduce the reduced mass to
reduce the number of degrees of freedom (6 2> 3)

1 1 1 1

Schrodinger equation
. PP e?
H==—+V(r) with Vir)=——
214 r

Eigenstates ﬁ|¢> — E|¢>

The Coulomb potential is an example of what is known as a central
potential or radial potential, one that depends only on the distance r to

TELEFDM
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Motion in a central potential

Consider the Laplacian expressed in spherical coordinates

(-h—QA +V(r )) Y(r,0,p) = EY(r,0,0)

24
with
| 52 1 . O 1 0%
Ay = ) (r¢) + = (Smgag <Sm989> U sin2«95’902>
1“;2
_?@D

h? 1 02
(— ouror )" Vm) PinSEl = Spina

Rotational Kinetic Energy




Motion in a central potential
( K21 02 L2

“ourore ome T Vm) FrSel =Seinng;

N —
~

A

H

Rotational invariance [H,L,| =0

Complete set of commuting observables > common basis {H, L2, Lz}

Y(r,0,¢) = R(r) Ye.m (0, p) Ye.m(0,¢) : Spherical harmonics
L?Yym(0, ) = £+ 1)*Yym (0, ©)

( P10 I+ 1)R?

“ouror T 2ue +V(T)) ST NG = S g

0@ 1P PARI



The radial equation

h 1 d? o 0L+ 1)R°
Qurdr?

2 | V(r)) R(r) = ER(r)

oo
Reduced radial wavefunction U(T) = R(T) with / |u(r)\2 dr =1
0

Radial equation
h* d*u
2u dr?

with  Veme(r) =V (r) +

+ Verr(r)u(r) = Eu(r)

00+ 1)R?
2ur?

3D-> 1D Schrodinger equation
But we get one equation for each value of | (e.g. multiple 1D problems)
This equation is independentof m € {—¢,—¢+1,...,¢}

B BT oo e R Em R
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The radial equation

A“:/eif& Centrifugal
: barrier 2 12
_2,u 12 + Verr(ru(r) = Eu(r)
0+ 1R
Verr,e(r) =V (r) A o

> n’ radial quantum number




2.
Determination of the eigenstates of the
hydrogen atom

e Ll +1)R°
Verre(r) = r l 27>




The principal quantum number

EA g — — 3
@/(2;”2) \ 1202/(2ur?)
,}\ ; ’ Veff(r
n = 4 =30 /f
n'=2[\_
=9 — A\
n'=1
n =2 e
States with the same 7’ + £ have the same energy
- degenerate states
We introduce the principal quantum number such as
~~ u -e2/r FE /
n=1 E,=—— n=n+{+1

TELEEDM
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Energy levels of the Hydrogen atom

£ olf

—El/g £= 2 )

—Ey/4 /=1 d-states
E; p-states

E’n —_— ——2
n
BT T =0
s-states n=n+0+1
l=n—m—-—1<n-1

For a given value of the energy En we have (=0,1,...n—1
The degeneracy of the level £, i.e corresponding to the dimension of

the vector subspaceis 1 +3+ ...+ (20 4+ 1)+ ...+ (2n — 1) = n?
Degeneracy enhanced by 4 when considering electron and proton spi

éf:'g}lPPAms




Eigenstates

The eigenstates are represented by the ket-vec_:tor |n, 5, m)

Hin, ¢, m) = Ey|n, £, m) g - b1

n2
The wavefunction are wn,é,m('ry 9, 90) — Rn,e(T)Ye,m(ea 90)
with Yy ., (0, ) = Fo.m(0) exp(imep)

F;,(0) is areal function with [— | m | nodes in JO, 7|

For the radial function Rne(T) it is possible to show

unﬁ(fr) . . , / T
R(r) = =[polynomial function of degree n’'] X " exp | — -
" 1
R,:(r) has N’ nodesin ]0,+oo[ n=n—4¥0-—1

TELEEDM
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The radial functions

3
9 (é) } e—Zr/ao
ao

3
1 Z 2 ﬁ e—Zr/an
V3 \ 2a0 ao
3

2 2
) Z\? - 2/r N 2 (ZT'2) o—Zr/3a0
3(10 3&0 27&0

Applied Quantum Mechanics, F. Grillot, EE270
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3.
Atomic orbitals
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Representation of an atomic orbital

How can we represent the complex wavefunction w(x, Y, Z) ?
We represent isodensity surfaces defined |¢(x, Y, z) =7

The constant 7 is a real number and choose such as

// [V(z, y, z)|2d:z:dydz — P  with forinstance P = 0.5.

[W(z,y,2)| =1

- This gives the probability P to find the electron within the surface

Then, we represent the phase and the complex
wavefunction by using a color code

TELEEDM
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¢ =0 s-like atomic orbitals ‘ ‘. |
n':n—ﬁ—lzn—lw $+

1
E

wn,0,0 (T7 07 90) — \/ERTL,O (T)

isodensity surface = spheres

133,0("“)

TELEEDM
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= p-like atomic orbitals ‘ j ‘+

n=n—-¥¢—-1=0

¢2,1,m(7°7 0, 90) = R2,1(T)

[3 |
Yi-1(0, ) = 3, S fe=

Reals orbitals, 2p,,
2p,, 2p, used in

—12,1,1) + (2,1, -1)
chemistry

Note:
V2

LCAO:
Linear Combination of Atomics Orbitals
4 i |

¥R 1P PARIS
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A n=3
B. n=4
C. /=0
D. /=1
E. /=29
F. m= -2
G.m=-—1
H m=1
.. m = 2
n=n"+4¢

Quiz 10

(n, €, m)?

Applied Quantum Mechanics, F. Grillot, EE270




Quiz 10 C+
A

W >
S
||
o
®

S
|
1

C. /=0

=

F..m = —2

G.m=—1

= (n,0,m) ?
n=n+¢+1




w >

mo o

— LT @

=3
n=4
¢ =0
/=1
V=2
m = —2
m= —1
m =1
m = 2
:nll

Quiz 11

(n, €, m) ?




w >

mo o

— LT @

=3
n =4
¢ =0
¢ =1
/=2
m = —
m = —
=L
m = 2
:n/

Quiz 11

(n, €, m) ?




Hydrogen atomic orbitals

. >
) 3
s-like |100>

12.0.0)

p-like

S & D

24k N2 100 2

d-like

Applied Quantum Mechanics, F. Grillot, EE270
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Hydrogen atomic orbitals

Hydrogen Wave Function
Probability density plots.

2 \3(n-1-1) /2 7oL .

INSTITUT MINES-TELECOM Applied Quantum Mechanics, F. Grillot, EE270
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4.
Time evolution

L d[(t))
vh pm

= H (1))




Evolution of an eigenstate
f]|n,€, my = Bl L, m) = Ry ||n., £, w)

If |1(0)) = |n,£,m) then [Y(t)) = exp(—iwyt)|n, L, m)

¢n,e,m("°> 97 90) — Rn,@(r)}/@,m(ev 90) — Rn,E(T)FE,m(e) eXp(imSO)

Y(r,0,0,t) = Ry, o(1) Fp.m(0) exp (i(mp — wyt)) ‘

? Time independent (stationary state)

q w(,r7 97 907 t)l

= For m #0 :
V(r,0,p0,t) = Ry o(r)Fym(0) exp (im (gp = %t)): Y (r, 0, @ O)
Rotation

TELEEDM
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Time evolution of 12,1,1> C

Y(r,0,0,t) = Ry (1) Frm(0) exp <2m (90 — ﬁt))

m
Forinstance |¥(0)) =2,1,1) (n=2,{=1,m=1)
27 t=10,00 fs

t=4.10fs

1,22 fs

Applied Quantum Mechanics, F. Grillot, EE270 e L
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Time evolution of a linear superposition

E § t=0.00 fs

0
thg —_
ha)g

1100) + v/3|211)
$(0)) = ——
W(2)) = %[e"""” 1100) + V3e @2 [211)]

hw _ 1 —iw1t —i(wy—w1)t

1 () = —e V' [1100) + V3e 211)]




Time evolution of a linear superposition

’% t=0.00 fs

Rotation

_ [100) + v/3]211)

(0)) 2

1 . |
Y(r,0,¢,1) = ie_lwlt[Rm(r)F 00(8) + V3Ra1(r)F11(0)e’ 210

hw < | ¥ (r, 6, 0,1) = f(r, 9

Applied Quantum Mechanics, F. Grillot, EE270 Ll




Time evolution of a linear superposition

E t=0.00 fs
Rotation
05 .,
h
3T | Blws
ﬁédg -V

~|100) 4+ v/3|211)
B 2

3,70 fs
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Section 10

Indistinguishable particles

Y1(7) Yo (7)
$— 72 8




Identical particles

Two particles are indistinguishable or identical if their physical
properties (mass, charge, etc.) are all identical

Example: 2 electrons or 2 protons
In classical physics, it is possible to track the trajectories of two
identical particles. These particles are discernible

e.g. the two physical processes below are perfectly distinguishable




Identical particles

In quantum physics, the concept of trajectory does not exist anymore

Before
»— — ®

collision
\
After —
collision
/

The question “which particle has been detected?” does not make
sense in quantum physics since the particles are not discernable

TELEEOM
aris

@lp PARIS




How to describe the system?

Y1(7) Y2 (7)
»— <.
En = L*(R%) ® L2(R?) Orbital
V(Tay T) = P1(7a)h2(T) ?

or Y2(7a)Y1(7) ?
or M1 (7a) V2 (7)) + papa(7a) U (75) ?

What representation to describe the quantum system?




Exchange particles

Pab is a permutation operator that acts by switching the labels on any
two identical particles described by the joint position quantum

state

Pab|a p1;b o) = |a:YPo;b:1hy) Fock states

Two particles w/o spin Pab\Ij(Faa Fb) = \P(Fb, ’Fa) géf:zeme & Séﬁeme
+— EH-/

B B ®E L RE

externe externe

Two particles w/ spin

Pula:v1;b: ) Qla:o1,b:o2) =a: b ¢r) Qla:oe,b: o1

Pab iIs a Hermitian and unitary operator

pc?b:i ij:Pab

TELEEDM
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Exchange particles
(U) = Cnmla: ) @ [b: )

Pabl\m = ch,m|a Ym) ® b hy) = Zcm,nla 1 n) @b )
Symmetric states pab|\11> = |) Cm.n = Cn.m

0) =3 cnla: ) @ [b: 400

@ Yn) @1[b:Ym) +a: Ym) @b Yy)
25 cn,m\@
2 %

Antisymmetric states lf’ab|\l’> = —|¥) Cmn = —Cnm = Cnn =0

@ Yn) @b Ym) —la:m) @b Py)
|\Ij> — Cn,m\/§
2 %




Time evolution

The two particles are indistinguishable (invariance under the exchange
of 2 particles as the rotational invariance seen in section 8)

[I'Af, pab] — () and [U(t, to), pab] =0

Consider Puy|¥(ty)) = €|U(ty)) avec € = %1

A symmetric (antisymmetric) state remains symmetric (antisymmetric).

However, quantum physics allows principle of superposition. Can we
put the system in a linear superposition of symmetric and
antisymmetric states? Another postulate is required at this stage.

I DR e cucrm Mechanis P Gl 5270 B
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Pauli exclusion principle

It is a postulate of symmetrization introduced by Pauli

All particles in Nature are Bosons or Fermions

Bosons: The state vector is always symmetric under particle exchange
Pop|¥) = |¥)

Fermions: The state vector is always antisymmetric under particle

exchange

Pop|¥) = —|¥)

Read also P. A. M. Dirac, « On the theory of quantum mechanics »,
Proceedings on the Royal Society A, Vol. 112, pp. 661, 1926
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Spin-statistic theorem

The spin-statistic theorem relates the intrinsic spin of a particle
(angular momentum not due to the orbital motion) to the particle
statistics it obeys

The demonstration of this theorem requires the quantum field theory
that is beyond the scope of this lecture. In our case, use it as a
postulate

- Particles with integer spin (photons, phonons, mesons pi, etc.) can
only be found in symmetric states hence these particles are
bosons.

Bose-Einstein statistics

- Particles with half-integer spin (electrons, protons, neutrons, etc.)
can only be found in antisymmetric states — these particles are
fermions.

Fermi-Dirac statistics

TELEEOM
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Composite particles

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

= Proton or neutron (3 quarks): s=1/2 [Fermion]
- Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: can you guess whether these two isotopes of sodium are
fermions or bosons?

I A =22, Z = 11

?
2. 2Na  A=23,Z=11
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Composite particles

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

= Proton or neutron (3 quarks): s=1/2 [Fermion]
- Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: can you guess whether these two isotopes of sodium are
fermions or bosons?

Z protons 1 %%Na, A=22,Z=11 Fermion
Z electrons 23
11Na A=23,7Z=11 Boson

N

A-Z neutrons
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Composite particles

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

= Proton or neutron (3 quarks): s=1/2 [Fermion]

- Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: And assuming the two nuclei?

Z protons 1. 1{Na  A=22,Z=11
Z electrons 23
llNa A=23,Z=11

N

A-Z neutrons
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Composite particles

The spin-statistics theorem remains valid for any composite particles

Composite particles with total spin equal to one half plus an integer
are also fermions. Conveniently, because spin only comes in units of
one half, this means any composite particle which contains an odd
number of fermions is a fermion

= Proton or neutron (3 quarks): s=1/2 [Fermion]

- Alpha-particle (2 protons and 2 neutrons) : s=0 [Boson]

Exercise: And considering the two nuclei?

Z protons 1. 22Na A=227Z=11 Boson
Z electrons 3 .
"Na, A=23,Z=11 Fermion

N

A-Z neutrons
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Composite particles

PARTICLE | SYMBOL 5uupce | Mass SPIN STATISTICS DECAY SCHEME UFETIME (SECONDS)
NEUTRING u 0 0 12 FERMI- DIRAC STABLE
_BECTRON e A ) 2 FERMI.ORAC |  stame |
POSITRON p + \ 12 | reRmiDRAC | STABE 7 -
s el e | Yo + 210 w2 | reemiOmAC | K —p+2v | 20x10° .
_ NEGATIVE MU MESON || j° "E 20 | w2 | reemiomac | p —ot2V | 2kt
EARSAMEICN K 4 | o2 | w27 | reamiomac? —_x—opwmzv 0"
PROTON N * 1836 172 | FERMI.DIRAC STABLE
ANTIPROTON 2 ? i 1836 M2 | FERMI.DIRAC STABLE -
 NEUTRON N 0 1838.5 2 | FERMI-DIRAC N—Ptetv | 700
_ ANTINEUTRON ? | N 0 18385 | 2 FERMIDIRAC | N—=FHp+v 7%
POSITIVE V.PARTICLE Ve 2600 7 ? | FERMIDIRAC ? | V' N#T 4Tt | 1072
NEGATIVE V-PARTICLE ‘ V" - 26007 ? FERMIDIRAC ? | V' N+ T 4 (2)T°" w2
NEUTRAL V-PARTICLE ve ) 26007 ? FERMORAC ? | Y N ETTE LS 3IX10 ™
PHOTON oy o 0 1 BOSE EINSTEIN Cstame |
GRAVITON x G 0 2 BOSE.EINSTEIN |  STABLE o
POSITIVE Pl MESON i m* + 276 0 BOSE-EINSTEIN R W’ —-“' +Vv | 26X10"
NEGATIVE PI MESON | T~ e 276 0 BOSE-EINSIEIN W e i +V 26x10°
NEUTRALPI MESON | 7 o 265 0 BOSE-EINSTEIN w2y o
» TAU MESON ‘? T + o~ 966 o7 BOSE-EINSTEIN T — 3T 10 7 ;
TELEEI‘:JI“'I
et fi |
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2 identical bosons with spin 0

Ground state level (E=2E,)
V3) Es
o) E, W) = a: ) ® [b: )

w1> — 00— E1

First excited state (E=E+E,)

[43)

Y2) —e— F
1) —e— E;

Es

_ o) @b 9a) +a:a) @b )

V) 7

Dimension of the Hilbert space associated to the energy E,+E, is
reduced from 2 to 1 (identical particles)

)



System with two spin-'-

8]_[ = gsfgi)n & gs(gzn

dimE'Y) = dim L) =2 dimEy =2x2=4

spin
One electron and one proton in the Hydrogen atom

{le:H)@p:+)le: +)®p: =) le: ) @p:+),|le: =) ®[p: )}

Two protons in the Hydrogen molecule

{la: H)@[p:+),Ja: H)@b:—),la: =) Q[b:+),la: =) ®|b: —)}
Any virtual system with two spin-1/2 (two state level systems) = Photon
pair (clockwise/anti-clockwise circularly and linearly polarized)
{la:op)®b:o4),la: o) @b o ),|a:0-)®b:oy),|a: o) ®|b: o))

{lea:D@[b:]),]a:]) @[b:),]a:=)@[b:]),|a:=) @[b:o)}

TELEEOM
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2 particles with spin-'-

Coupling two particles with spin 2 means that the total angular
momentum is integer and only equals s=0 or s=1 (hot demonstrated in

this course)

gspinl/z ® gspinl/z = Es=1 D Es=0

h 2x2=3+1
A
I\
spin 0

Spin’2  Spin'.  spin1 ;
(triplet) (singlet)

TELEEOM
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2 identical fermions with spin-'
Ground state level (E=2E,)

a a b b

|¢3> Es o = ge(:x’zerne X gs(pi)n X gegx%erne X gs(pi)n
a b a b

|¢2> E2 — g(gx'zerne ® ge(xi);erne ® gs(pl)n ® gs(pi)n
[91) —H— Er —~ T

Orbital spin
WY =la: Y1) R|b:Y1) Q(cyq|la:+,b:4)+cy_|a:+,b:—)
-|—c_+|a . —,b: -|—> -+ C__|a, g =i —>) dim=4

pabl\Ij> = —|\If> = Cy4 =C__ = 0 et Cr— = —C—p
a:+,b:—)—la:—,b:+ o
‘\Il> :EL : wll(g;lb : ¢1J> R |& >\/§| J> dim=1
Orbital spin (singlet state)
(symmetric) (antisymmetric)
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2 identical fermions with spin-'/

First excited state level (E=E+E,)

) (Ja: 1) @ |b:be) +la:va) @ |b: 1) /V2® |s=0,m = 0)
() (la: 1) ® b ) — |a : o) @ |b: 91))/vV2 @ |8 = 0,m = 0)
(a:w1>® b¢2>+ a:¢2>® bz/)l))/\@@) s=1,m)
) (la: ) @b a) —|a: ) @|b:1))/V2®|s = 1,m)
s=0,m=0)=(|+-)=|=+)/VZ dmB |y By
s=1m=1)=|++)

s=1m=0)=(+-)+|—+))/V2 V2) —e— E;
s=1,m==-1)=|--) simes V1) —o—Ei

spin (triplet state)
symmetric




Generalization to N particles

Many-body interaction has to be taken into account in the Hamiltonian

m

W_/

Coulomb interaction
between electrons

Z Z ,2 Z. Z
2_: _z_:erZ_Z % P

Many situations in physics and chemistry involve N identical particles
like atoms with Z electrons

Physics of semiconductors devices also requires the inclusion of many
body interaction

TELEEDM
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Generalization to N particles

We do not consider the interaction between particles

N N
A=Y Vg . . ghMe.. @™ =3 i»

n=1 n=1
We also assume that the > Ex
eigenstates and eigenvalues of one w > E
particle are known 4 4
A ¥s3) L
hYa) = Ealtha) Y2) %
¥1) Fn

U) = [1:9h0,) @2 Py} ® .. ® |N : 1hay) Eigenvector of H
B = Eal + Eag 4+ ...+ EaN Eigenvalues of [:[

TELEEDM
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System of N bosons

Consider N! p-permutations of {1,2,..,N} as well as the corresponding
operators P, acting in the Hilbert space

- The state vector must be invariant whatever the permutations
Consider the given configuration
11:%a;) @2 :%ay) @ ... Q[N : Yay)

Using the postulate of symmetrization, the state vector becomes

T) = FZPpu Yar) ® ... @ |N : Pay)

P,|¥) =|¥)

and C is a normalization constant
ﬁﬁ
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System of N bosons

\\I!):\1:¢1>®|2:¢1)®...®|N:¢1>




System of N fermions

Pauli exclusion principle : f)p ) = ¢, [\V)

11:%0,) ®12: Ya,) ® ... N : ay) Signature of the

Permutation

Using anti-symmetrization, we get the following state vector

1 o
|¥) = W;GPPPH3¢a1>®---®|N3¢aw>

1:%ar)  11:i%ay) -ov |1:tbay)
o L | Prva) %) o [2:0ay) | iater
v = VN1 ; : : determinant

N 9o IN:%ay) oo [N :gay)

- vanishes when two columns are identical e.g two or more
identical fermions cannot occupy the same state (Pauli)




System of N fermions with s=1/2

Useful to explain the construction of the atomic and molecular orbitals,
the energy bands in solids, and of course the stability of matter

ﬂﬂ Eo =

f :
ﬂ h|¢a:> — Ealwa >

€;

1M

1:yn+)  [L:9p1—)  [Litpet) ... [1:9Ynj2—)

o) = 1 2:914+)  |2:1—)  2:4) ... |2:9Nj2—)
VNI : f : f

N :9p1+) [N :91—) [N :e+) ... [N :¢nj2—)

TELEFDM
aris



Aufbau principle

In an atom or ion, electrons fill atomic orbitals of the lowest
available energy levels before occupying higher levels leading to the
most stable electron configuration possible wavefunctions

-ﬂ—ﬂ-ﬂ- 4p°  Ga Ge As Se Br Kr

ﬂi&aﬁl%;“ Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y F 4s K Ca
n=4 7.

S A 3" Asipsciar
—HN— 35> Na Mg

-2 BCNOFNe
o Se—t—2s  LiBe

TELEFDM
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Periodic table

1s* 25 2p° 3s” 3p° [4s® 3d"%] 4p° [55” 4d™°] 5p° [65” 4 f1* 5d'°] 6p° [75* 5]

1y A 2He
T-< (% Transition metals ¥s 6 7 8 9 |10
Li | “Be (¢ = 2) B|S |~ | % | °F |'%e
19 (2004 [215¢ (2271 23y [24c1]25Mn|26Fe 2700281 [29cu[302n[31cal32ce 33as 3456 358 1 [36K ¢
37Rb[38sr | 397 [40zr|41Nb[42Mo|43Tc|44Ru|45RN[46Pa|4TAg|48cd[491n[50sn |5 sb|52Te| 53T [54%e
55cs(56Ba| * |72mf|73Tal 74w [75Re|760s|771r|78Pt|79Au[80ug (81T 1 [82Pb|83B1 [84Po(85At [B6RN
87rr|88Ra [N
* Lanthanides|571,a(58ce|59pr|60Nd|61Pm|625m|63Eu|64Gd|65Tb|66Dy |6 THo|$8Ex |69 Tm|70vb|7 1 LU
D © © 1, |20 Th|?1Pa| 22U [23Np|?4Pul??Am|?°cm|?'Bk|?8c£|?®ESs

http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm

Applied Quantum Mechanics, F. Grillot, EE270
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Section 10
EPR paradox and Bell inequality




The EPR argument

A. Einstein B. Podolsky N. Rosen

MAY 1§, 1935 PHYSICAL REVIEW VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PonoLsky AND N. RoSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In 1935, EPR said the quantum theory is not complete pointing out the
existence of possible hidden variables in the formalism

Einstein discovered that the formalism of quantum mechanics contains
the existence of particular states named entangled states

1

%) = — [l++) +|==)]
V2

“If, without in any way disturbing a system, we can predict with

certainty the value of a physical quantity, then there exists an element

of physical reality corresponding to this physical quantity”

éf:‘g;lPPAnls




The EPR argument

B. Podolsky N. Rosen
PHYSICAL REVIEW

A. Einstein

VOLUME 47

MAY 15, 1935
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PonoLsky AND N. RoOSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 19353)

In 1935, Niels Bohr answered EPR by saying that the quantum theory is
complete i.e. there are no hidden variables

PHYSICAL REVIEW

OCTOBER 15, 1935 VOLUME 48

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

N. Bour, Institute for Theoretical Physics, University, Copenhagen
(Received July 13, 1935)

In 1964, John Bells introduced an inequality that has further led to the
experimental evidence that quantum mechanics is indeed complete

TELEEDM
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Entangled state

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents; that is to say,
they are not individual particles but are an inseparable whole

Let us consider two vectors [¥1) =3 an|6\) et |1ho) = D b,|\”) then

[¥) = [41) ®[h2) =3, pan by 62)) ® |85”) is a vector of the total Hilbert
space _”H{W ® Hy

However the reverse statement is wrong i.e. there exists non separable
states of the Hilbert Space that can not be expressed as

9) = cnp [0 ®16P) # 1) @ [w2) = an by [8) ® |6P)
n,p n,p

Such a general state W which cannot be written in the form of a tensor

product is called an entangled state
ﬁiﬁ
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Quiz 12

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents.
A non separable state is entangled

Find below which of the following quantum states are entangled?

l++)=|a: )R|b:+)

A.|++)

B.|+ —)

C.(|++)+|+-))/vV2
D.(|++)+|—-))/V2
E(|+-)+|—+)/V2

Bl bt =k =blsk = =1)/2
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Quiz 12

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents.
A non separable state is entangled

Find below which of the following quantum states are entangled?

l++)=|a: )R|b:+)

A. |+ +)
B )+ 1)
C(l+4) +|+-))/v2 —>I+>®( 5 )
@2
() E (+=)+1=+)/V2 () + 1) ® (14) + 1))
L+ 44|+ 2) =)+ = )2 T

TELEEDM
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Photon polarization

The polarization of a single photon is described in an Hilbert space of
dimension 2

) =a|v) + B |h)
of + |81 =1

(a, B) real coefficients: linear polarizations
(a, B) complex coefficients: elliptic and circular polarizations

An individual photon can be described as having right or left
circular polarization, or a superposition of the two. Equivalently, a
photon can be described as having horizontal or vertical linear
polarization, or a superposition of the two

= It is a two-state quantum system called quantum bit or gbit

Applications: quantum cryptography & quantum information

TELEEOM
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Measurement on an entangled state

Two photons
faraway from
each other

Consider the following entangled quantum configuration with two
photons linearly polarized

V) = = [|[P1:h1)@|P2: hy)+|Pl:vy)®|P2:vy)]
V2

1 |
|‘I’):7§[|h1h2)+lv1v2)] — I‘I’>=E[I++>+I——>]

The Hilbert space of dimension 4

E=8Ep, ®Ep,

dim & = dim 8P1 X dim 8P2 TELECOM



Measurement on an entangled state

P1 P2

Two photons
faraway from
each other

1
W) = 5 [|h1h2) + [viv2)]

P1 transmitted P2 transmitted
Result (eigenvalue): g,=+1 Result (eigenvalue): g,=+1
Eigenstates: |+4,> Eigenstates: I+4,>

P2 reflected

P1 reflected
Result (eigenvalue): £,=-1 Result (eigenvalue): g£,=-1
Eigenstates: I-,> Eigenstates: 1-3,>

@lp PARIS



Measurement on an entangled state

Initial entangled quantum state

I'¥) = % [lR1h2) + [viv2)]

+onte?  =(cos(8)|hy )+ sin(0,)[v,)) X (cos(8,) [hy ) + sin(B,) v, )
= cos(B,) cos(B,) |h,h,) + sin(8,) cos(B,) |v, h,) +
cos(B,) sin(B,) |h,v, > + sin(6,) sin(B,) |v, Vv,

ot me2?  =(cos(8)[hy ) + sin(6,) v, ) X (-sin(B,) |h, ) + cos(8,) |V, )
= - cos(0,) sin(8,) |h,h,) - sin(B,) sin(B,) |v, hy > +
cos(8,) cos(B,) |hyv,? + sin(B,) cos(B,) | vV, )

4

-0t g2 = (-sin(8y) [hy ) + cos(8y) [v42) X (cos(By) [hy ) + sin(8,) |v, ?)
= -sin(6,) cos(B,) |h,h,) + cos(8,) cos(6,) |v4 h, ) -
sin(6,) sin(B,) |h, v, ) + cos(8,) sin(B,) |v, Vv,
o1~ 02 7 (- sin(B,) |hy > + cos(B) [v4 ) X (-sin(B,) |h, ) + cos(B,) |V, )

sin(8,) sin(8,) |h,h,) - cos(8,) sin(8,) [v, h, ) -
sin(8,) cos(8,) |h, v, ) + cos(8,) cos(B,) |v,V, ) -

:f:qg;lPPAms



Measurement on an entangled state

Two photons
faraway from
each other

| + 61, + 622 = (cOs(84) [hy ) + sin(B,) [v4 ?) @ (cos(B,) |hy ) + sin(B,) [v, ?)

P(+g, %)= +¢1, *+o| ¥)|2=%cos?6,-0,)
P(—g1:—02) =€ =1, —g2| W) |2=" cos?(8, - 6,)
P(+61,—62) =€ *o1, —g2| ¥)[2=7% sin¥(6,-6,)
P(—61:*e2) = —g1, + 2| W2 |?2=" sin6,-8)

The sum of the joint probabilities is 1

TELEEOM
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Measurement on an entangled state

Two photons
faraway from
each other

P(+g1,tg)= , too| W) |?2=" cos(8,-8,)
P(—g1,—02)= <— o1: —e2| W) |2="% cos?6,-6,)
P(+g1,—02)=| € +g1, —g2| W2 [|2=7 sin%(6, - 6,)
P(—g1,+g2)=|{ —g1, *o2| W2 [2=7 sin¥6,-6,)

What are the single probabilities for separated results?
P(+g1) =P(+g1,ta2)tP(*g1,—02) =7
P(—g1) =P(+a)=P(-g) =%

Randomness results not dependent on the polarizer angles. However
those obtained by Alice and Bob together are strongly correlated

{iﬁ}lpnms




Measurement on an entangled state

Two photons
faraway from
each other

For each pair of particles, Alice and Bob calculate the product of the
results £, = ¥1 and ¢, = ¥1 and obtained a number g,&, = *1

- €,&, = +1 results are correlated; €,&, = -1 results are not correlated

Repeating the measurements multiple times, Alice and Bob can obtain

the correlation function

E(61,02) = (e1€2) | E(61,6,) |I< 1

E(61,62) = Z(fl &)iPi(el, €) = cos*(62 — 61) — sin’(62 — 61) = cos[2(62 — 61)]

TELEEOM
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Quiz 13

Correlation on an entangled states?

P1 P2
Alice 0,=0 <@ e—— O, Bob

1
I'¥) = - [lR1h2) + [v1v2)]

\/_
A. E@, 0) = +1
B. E(©,0)= 0
C. E(0,0+45% =0
D. E0, 0 +45°) =- 1
E. E0,0+90° = 0
F. E©,0+90°) =- 1

TELEEDM
aris

mEE



Quiz 13

Correlation on an entangled states

P1 P2
Alice 0,=0 <«—e@ o—— 0, Bob
1

I'¥) = E [lR1h2) + [v1v2)]

. E(0,0)=+1
E0,0)=0
E(0,0+45°) =0
. E(0,0+45°)=-1
E(0,0+90°) =0
E(0,0+90°) =-1

When 6,=6, Alice and Bob will always find the same results (++) or (--)

When 0,=0,+90° Alice and Bob will always find opposite results (+-) or (-+)

éf:‘g;lPPAnls
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Measurement on an entangled state

Now consider the case for which 6,=0 Alice has measured +1
What is the state of the system after her measurement but before Bob’s

measurement?

Third postulate: The quantum state is obtained by projection. However if
Bob has not yet performed the measurement, we replace the

corresponding projector by the identity

Proof (not trivial)

[ = % [|+9, +g, ) + I—Ha _92>]

1
[¥,) = (1+0) (+ol ® 12) [¥) = - T

\/_

If Alice measure |+91=9), the state received by Bob is |+92=9>

Now, you should start wondering about metaphysical questions...
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Bell inequality

P1 P2

Two photons
faraway from
each other

How to explain quantum correlations? Following the EPR argument,
John Bell assumed that there exists hidden parameters A
that must determine the outcome of Alice and Bob measurements

A6, ) = 1 Statistic distribution
B(6,, 1) = +1 (normalized)

FL\

E(01,6,) = f A(01, 1)B(62, V)p()dA
J.S. Bell, Rev. Mod. Phys. 38, 447 (1966)

-
\ X
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Bell inequality

P1 P2
Two photons

faraway from
each other

Then John Bell introduced the following quantity (averaging on p(A) )
S = E(01,6,) + E(07,0,) + E(, é) — E(6;, ;)
s =(S) = A(61, )B(62, ) + A6}, )B(62, 1) + A0}, )B(6;, 1) — A(61, 1)B(6;, ) = £2
For any hidden variable theory, Bell inequality tells us
| S |<2
J.S. Bell, Rev. Mod. Phys. 38, 447 (1966)
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Violation of Bell inequality

Entangled state

P = % [h1ha) + viva)]

From quantum mechanics, we
know the correlation function

E(61,62) = cos[2(62 — 601)]

S = E(61,62) + E(6,6) + E6},6,) — E(61,6))

T P .
R AR AR

|5 =2 V2 >2 Violation of Bell inequality!!

S
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Bell inequality

P1 P2
Two photons

faraway from
each other

How can we explain this result with such “simple assumptions”?

AO, 2)=+1 B(O, 1)=z1 /p()\)d)\ 1
Bell assumptions are always verified in classical physics but there is

no weakness behind them
1. Local model A(OI,HZ,)»):il B#,,0,,4)=+x1
2. The hidden properties are hold by the each particles via the variable A

(Bohr: “This statement is not true in quantum mechanics”) e
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Aspect experiments (1981-82)

] = p
Az= Hol im
j= %“
§//\b=422nm

]_

C,, C, are optical switches redirecting photons towards polarizers with
angles (04,0’4) and (0,,0’;). Commutation was faster (10 ns) than
propagation of light between polarizers (40 ns) and even faster than
time of flight of photons between the source and each switch (20 ns)

L=12m
‘€> 0, ,
K%e )(43922 \@
DY e — @ 2 XM

N(a,b) , N(a,b’)

N(a’,b) , N(a’,b")

A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)
A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982)
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Aspect experiments (1981-82)

Result in a perfect agreement with quantum theory

E(61,62) = cos[2(62 — 01)]

1 :..E,__'
| ‘ S = E(Ql, 92) + E(Hi, 92) + E(gi’ 9&) _ E(Hl, 9&)
0
@ — oo sge o
38 - 60 30
: Sexp= 2.697 £0.015
-1t e

FIG. 3. Correlation of polarizations as a function of
the relative angle of the polarimeters. The indicated
errors are =2 standard deviations. The dotted curve
is not a fit to the data, but quantum mechanical pre-
dictions for the actual experiment. For ideal polar-
izers, the curve would reach the values +1.
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Others experiments

Aspect experiments were pioneered and showed (fairly) conclusively
that quantum physics is non-local, and that the universe is much
stranger than it appears, or than Einstein would've liked it to be

Others ultimate experiments have been done in 2015
Entangled photon pair, L = 58 m in Vienna, Austria Vienne [1]
Entangled photon pair, L =185 m in Boulder, USA [2]
Entangled spin pair, L = 1.3 km in Delft, The Netherlands [3]

-> All results are in a perfect agreement with quantum theory
-> Closing the door on Einstein and Bohr’s quantum debate!

[1] M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015)
[2] L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015)
[3] B. Hensen et al., Nature 526, 682 (2015)

See also, https:/[physics.aps.org/articles/v8/123
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Consequences of the violation of Bell inequality

This conclusively shows that either the realism and/or locality
assumptions must be voided, i.e., there is no deeper local realist theory
lurking behind quantum mechanics. Most physicists have chosen to
reject realism (i.e., that unobserved quantities have definite values),
though some still favor nonlocal realist theories

In any case, entanglement allows us to introduce and manipulate
nonlocal correlations, a concept alien to most conventional classical
physics. It is this property that enables many of the novel uses of
quantum information

Multiple applications: quantum cryptography, quantum key-distribution
(QKD), guantum teleportation, quantum computation ,
See supplementary information IV for further readings
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Quantum teleportation

Quantum leaps
China's Micius satellite, launched in Aug
‘spooky action” that Albert Einstein ab

as now validated acr
The team is planning ot

Micius
km altitude)

y :@:

4 Global network
Future n
grount

enable a

internet

record 1200 kilometers the
quantum tricks (2-4)

1. Spooky action
Entangled photon
separate statior

~

@

Pair

2. Quantum key distribution
Micius will send strings of entan
gled photons to the

creating a k

proof cor

-
dmﬁ

Pair string

3. Quantum teleportation
Micius will send one ¢
photon to Eartt

mate on board. Wt

photon with an unkn:

Boha « entangled with the one

INSTITUT MINES-TELECOM

“and their states jointly mea

Applied Quantum Mechanics, F. Grillot, EE270

RESEARCH ARTICLE

QUANTUM OPTICS

Satellite-based entanglement
distribution over 1200 kilometers

Photon with
quantum state |0>

A
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Section 12

Quantization of Electromagnetic Field

2 eoV 2 | poVio
EAT o €A o 'K,

It is recommended to also read the supplementary information V




Multiple applications at the nanoscales
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The quantization of the field is required to understand the light-matter

interaction at the nanoscale
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Maxwell equations

In free-space, recall Maxwell equations (with J=0 and p=0)

6°(€0E’)=O 6XE=—N08—H
ot

V-(H)=0 p'VxH=e—

These equations describe classical electromagnetic waves.
But how do we get to a quantum theory of electromagnetic radiation?
- We can find the classical Hamiltonian for electromagnetic waves and

quantize it

Consider a perfect cubic cavity of volume y=L3as L — +
We want to find the electromagnetic modes in the box and quantize them
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Electromagnetic modes & spatial profiles
Modes are written in terms of the fields (using separation of variables)

Ek (7,t) = IZA(F)elZ »(t) and HE,A(Fa t)E,)\ — 7713,>\(7?)h12,>\(t)

with R = Crsink )
Uz a = 75 cos(k - 7)
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Electromagnetic modes & spatial profiles

Plugging the fields into Maxwell’s equations

Oep (1) &k Ohg 5 (t) k
ot €0 ot L0

The solutions for this set of equations are oscillatory with frequency

WE = E
VEOHO

Energy per mode becomes

L[ —
Eir= /V i (eo B2 , (7,1 +,LL0H,—3»,>\(r,t))

= ck and h and € will be 90°out of phase

)

1

= Ceoel, /|u,“| 47 + ¢ poh’ A(t)/ 5 | |2dF
A%

ez 0+ B2hE (1)
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Analogy with the quantum harmonic oscillator

The analogy with the single harmonic oscillator (SHO) is not accidental:

Electromagnetic radiation is coupled oscillation of the E and B fields

Classical SHO Classical EM Modes
© 2ty = 2 NG ELTING
o) = —mue(t) | Thea() = —ep (0
s % — mw;)xQ Eix = %62(?5)];’)\ + %h%)\(t)

Electromagnetic field quantization
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Hamiltonian for single-mode quantum radiation

Let us now introduce both creation and annihilation operators

. | €@V (. . [Ho 3 o eV (. [Hog
a’E,A — o (GE,A +1 ahk’)\> aE,A = 2hwn (ek,)\ [/ - hk,)\

Following the same procedure as the one use for the quantum
harmonic oscillator, we show that

A ]_
_ o
HE,A = hwk [CLE,ACLE,)\ + 5]

Eigenstates |n,; A> with n=0,1,2,... corresponds to the number of

photons into the mode

Even there are no photons in the mode, there is still a finite energy

= mk
(i.e. vacuum) of energy N

TELEEDM
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Multimode Hamiltonian

Since there are many modes in free space, the total Hamiltonian can
be written as the sum of the individual modes. For convenience we

label each mode (k.A) with |
Hpy =) hw; |ala; 41
: J 5 9

Note that different modes do not interact with each other, i.e., each

mode is independent

Eigenstates |{n}> = \nl,nz, o 2 20 o) Uk o = > = \n1> |n2> ce \n]> Ce

with E{n} = Z hwj (nj + %)
J
And we do still have creation / annihilation operators (not Hermitian)
a; |nj) = /nj|n; —1) for n; >0, a;|0) =0
al Inj) = v/nj ¥ 1|n; + 1)

mEE
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The vacuum state

Recall that in the quantum harmonic oscillator, the ground state (n = 0),
is such that (x) = (p) = 0 but Ax Ap = h/2 . In quantum electrodynamics,

it can be shown that for the vacuum state of each mode, (e) =(h) =0

hw hw
2 = Dk 2 - [k AeAh = Muke
Alegs Aop s B 2

There are zero-point fluctuations of the fields in vacuum which
contribute to the finite zero-point energy and which can be thought to
induce spontaneous emission

Total energy of the vacuum
T ! ,
J

However, the energy difference with excited states, which is what is
typically observed, is finite
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The vacuum state

The vacuum is responsible for remarkable features of quantum physics

The vacuum is the minimum dispersion state that is to say a state in
which the fluctuations have the minimum values compatible with
Heisenberg relationship

Explain the decay of an atom down to ground state by spontaneous
emission

Affect the positions of the energy levels of the atom (Lamb shift)

PHYSICAL REVIEW VOLUME 72, NUMBER 3 AUGUST 1, 1947

Fine Structure of the Hydrogen Atom by a Microwave Method* **

WiLLis E. LaMB, JR. AND ROBERT C. RETHERFORD
Columbia Radiation Laboratory, Department of Physics, Columbia University, New York, New York

The Casimir effect that is to say the attraction between two metallic
plates close to each other
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The Casimir effect

H. Casimir first predicted in 1948 that when two mirrors face each

other in vacuum, fluctuations in the vacuum exert radiation pressure
on them

Casimir force

B —7m2hcA
924044

Since the space between two plates is different from the space outside,
the vacuum fluctuations are also different in the two regions. The
fluctuations exert different forces on the plates from inside and outside,
resulting in a net pressure

Casimir forces set fundamental limits on the performance and the
possible density of devices that can be optimized on a single chip
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The Casimir effect

At the nanoscale, the Casimir force can produce a collapse of movable
element to the substrate or the collapse of neighboring components
during nanoscale device operation

torsional rod oW

polysilicon plate

microelectromechanical systems, or MEMS.

(a) This MEMS device consists of a polysilicon plate
suspended by a torsional rod only a few micrometres
in diameter. When a metallized sphere (purple)
approaches the plate, the attractive Casimir force
between the two objects causes the plate to rotate
around the rod. (b) An electron micrograph of the
device that shows the polysilicon plate.

(c) A close-up of the rod.

Science, Vol. 291 no. 5510, pp. 1941-1944, 2001
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Electron-photon interaction

Alongside any quantum electronic system (hydrogen atom, potential well,
etc.), there is also a quantum electromagnetic system. We can consider
the composite quantum of an electron in some potential V(r) with the
omnipresent electromagnetic field as the sum of the individual
Hamiltonians with an interaction Hamiltonian

~2
_p 1 i
%-FV(T -I-Zhw [ 3+2] el -7
:r \] Y ﬁ’int
Hgum
with E Z)\ \/zev(aj
leadingto  Hint = —BZ 2€0V Aj T

Eigenstates are linear combinations of |p;,{n})

TELEEUM
aris

sghi}wnms




Electron-photon interaction

The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

(6, {m} 1,0, {n}) = —ez\/w qb\xg d < a; +a} | {n})
J
i
Wavefunctlon Photons
ny,...) and

Suppose states |[1)=[y4,{n4}) and [2)=|y,,{n;}) where |{n.})=|n,,...
[{n2h)=Iny,...ng ;.. )Wlth energy E1—E=hwy

<2 Z_eZV 260]} {n2}‘(aa +a; ><’¢2 j 7‘)¢1> |2) o
:—e\/;::’{)<nk+1)&};‘nk><¢2lxk.f"¢l>
1) x

hwy, ~ R
= —e zeov\/nk +1 <1,b2 ‘ Ak * T ' '¢1>
Transition 12> to 11> takes place while increasing the number of photons
in mode k by 1 (a photon is emitted)
—§e 4|

éf:'g}lPPAms
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Electron-photon interaction

The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

(6, {m} 1,0, {n}) = —ez\/w qb\xg d < a; +a} | {n})
J
|
Wavefunctlon Photons

Suppose states |1)=|p4,{n4}) and |2)=|yp,,{n,}) where |[{n,})=|n4,...n,,...) and

[{n2})=|N4,...nk -4,...) With energy E,—E =hwy

<2 =—62V2€0V {n2}’(a_7+a ><’¢2 j 7"1/)1> 12) a
"N\

= —¢ h‘;}’{)(nk—1|&k|nk)<¢2’xk'F‘¢1>
1) —@

260V\/_<¢2 l i ’ ¢1>
Transition I11> to 12> takes place while decreasing the number of photons

TELEEDM
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Electron-photon interaction

The interaction has a spatially dependent part which acts on the electron
wave function and a photon operator part which acts on the photon states

(6, {m} ] 5 {n}) = —ez\/w ¢1/\3 F g{m}‘ag+aT‘{n}>

J

i
Wavefunctlon Photons
. 2
Rate of absorption <2 Hini 1>’ X N
. 2
Rate of transitions <2 H;..; 1>| xng+1

And spontaneous emission is included

TELEEDM
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Two-state coupled to a single mode

Suppose a two-level electronic system coupled to only a single photon
mode j (an example is an atom in a microscopic waveguide cavity)

(ks O 0 p AT
H_(O E())-I—hw(aaj—l—l/Z)—l-ﬁ(p O)(aj—l-aj)

@)
With eigenstates such as |1)) = ) ¢4 |a,n) + Cpn |b,n)

n=0
Rotating wave approximation: Suppose the mode frequency is such
that hw=E,-E, with E,>E,. Then we expect photon absorption to
dominate the coupling from state b to a (p term) and emission to
dominate the coupling from state a to b (p* term)

_(E, O R 0 p 0 O
H—(O E{))—I—hwj(ajaj—l—l/Q)—l—h(O O)aj_'_h(p*




Two-state coupled to a single mode

The interaction Hamiltonian only couples states |a,n) and |b,n+1) to
each other. So let us consider the action of the Hamiltonian just on the

basis |a, n) and |b, n+1)

i= (5 8) s (70 i lam) v ™)

_ Ep pvn +1
“\p'vn+1 Ep

with Ep = E, + hwj(n + 1/2)

1
Eigenstates F = FEp =+ |p|vn + 1 Eqaa n) +[b,n + 1))

If the system starts out in, say, |a, n), the state will Rabi oscillate back
and forth between |b, n+1), continuously emitting and reabsorbing a

single photon

TELEEDM
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Rabi oscillations

Single localized emitter, initially in its excited state and resonantly
coupled to a single empty mode of a lossless micro-cavity

No dissipation (e.g. perfect micro-cavity)

J. M Gerard, Single Quantum Dots, Topics Appl. Phys. 90, pp. 269-315 (2003)
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Two-state coupled to a continuum

Suppose we have a two-level electronic system with states |a) and |b) in
free space. The total Hamiltonian becomes (dropping the vacuum energy
which just adds a global constant)

_ (hwa O t 0 Dj\ s o 4t
H = ( 0 hwb> —I—Zﬁwjajaj -I—hz (p;“ 0) (aj +aj)
J J

Suppose the system starts in the state |a,{0}) (i.e., in the upper
electronic state with vacuum fluctuations). An excited state is not a
stationary state so what is its time evolution?

The true eigenstates of H are complicated, so we write the state of the
system in the basis of |a, {n}) and |b, {n}). Because these are not energy
eigenstates anymore, we must allow their coefficients to be time-

dependent
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Two-state coupled to a continuum

Suppose we have a two-level electronic system with states |a) and |b) in
free space. The total Hamiltonian becomes (dropping the vacuum energy

which just adds a global constant)

_ (wa O f U AN,
H = ( 0 hwb) —I—Zﬁwjajaj -I—hz (p;‘ O) (aj +aj)
J J

Suppose the system starts in the state |a,{0}) (i.e., in the upper

electronic state with vacuum fluctuations). An excited state is not a
stationary state so what is its time evolution?

Since the p; interaction only couples |a,{0}) to states |b,{1j}) (product
state of |b) with one photon in mode j), we only need to consider these

states in our expansion
[(t)) = ca,foy (B |a, {0}) + ) v q1,3 (E)e @ tes)i b, 1)
Y]
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Two-state coupled to a continuum

Substituting into the time-dependent Schrodinger equation, we obtain

0
h— — H
(zhat

Working out the results of the time-dependent Schrodinger equation

)

Ca, (0} (B)e™ " |a, {0}) + ) cp, g1,y (B)e ™ @eF i) b, 1)

J

and then projecting onto |a, {0}) and |b, {1j}), we get

Ca, {0} (8) = —1 ije_i(wj_A)th,uj}(t)

J

*x t(wj—A)t

¢p,{1,}(8) = —ipje Ca,{0}(?)

With the frequency detuning A = wg — wp

=0

TELEEDM
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Two-state coupled to a continuum

We can integrate the second equation from t = 0 to t, recalling our initial
condition c, (4= 0, and then substitute in the first equation to obtain

t

Ca,{0} (1) = — Z Ip5]° / e~ WimA e 0y (t)dt

0
Z — | dE;g(Ej)
/ \ Density of photons

Summation on a continuous
range of photons mode j
t

Ca, {0} (t) = —|pj|*ca {0} )T / dw;g(hw;) / e~ Wi A gy

The above equation assumes that c, ;,, changes slowly with time, such

TELEEDM

that c, (o)(t") = C, 40(t)
wHI T
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Two-state coupled to a continuum

What is the long time limit of this?

t
tlim dt'e M@= A — r5(w — A)
—2 00 0

leading to

. 70
Carf0)(8) = — 3 13 Peantoy (6 [ dEsg(huoy)o(s — )

I

Ca, {0} (1) = _§Ca,{0}(t) — Cq,{0} = exp(—I't/2)

The integration of this very last equation allows to retrieve the so-called

Fermi-Golden rule

TELEEDM
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Two-state coupled to a continuum

The probability of the system remaining in its initially excited electronic
state without emitting a photon is given by

Ca,{0}|* = exp(—Tt)

_2m
R

which is the so-called Fermi golden rule

i.e. I' p;°9(AMws — wp))

In other words, the system irreversibly transitions away from its initial
excited state by emitting a photon; substituting in values for p; and the
photon DOS, we obtain exactly the spontaneous emission rate predicted
by the Einstein relation and previously calculated semi-classically

TELEEOM
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Section 13
The WKB Approximation

b MWWWNNNAW\'WNM’MW _

Further material on perturbation theories is available in the supplementary
information documents Il and Il
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WKB approximation

WKB=Wentzel-Kramers-Brillouin is a way to semi-classically
approximate wave functions for slowly varying V(x)

We write a general wave function ¥(z) = Ae**®)/? where A is real
and S(x) is a complex function

Substituting () into the Schrodinger’s equation, we get

p(z) = v/2m(E — V(z)) = hk(z)

Now expand S(x) in powers of /i such that

2

S(z) = So(z) + Sy (z) + %52(3;) P
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WKB approximation

Using the series expansion of S(x) we find

) [(850($)>2_p2(x)] o [aso 95, 33250(:1;)] N

or 0r 2 Ox2

ox
8S, 08 851(z)\°  9%8y(x)
2 0 2 1 - 0 3
& [83: 89[:+< Ox ) " o2 O

Every term of the series in R must vanish, i.e.,
dSo(z) ’ 2

( o ) p*(z)

850 851 . 382SO($)

or Ox 2 Ox2
830 852 a (851(ZE)>2 o 2823()(1’)

or Ox ox Ox?



WKB approximation

We can solve the equations sequentially

X

So(x) = :I:/:p(a:’)d:c’ — :I:h/ k(z")dx'

0 o
i 0S5 i
Substituting So + 751 in ¥ and absorbing integration constants in A
V() =~ Ak™12(z) exp (:I:z/ k’(a:')dm’) for E>V (x)

V(z) ~ Ak~Y2(z) exp (:I: /m &(x’)da:’) for E<V (x)

where x = 1/2m(V(z) — E)/h2.

|



WKB approximation

2K
mw?

Let V(z) = mwz?/2 with classical tuning point such 1y =+

Io o _ 2
/ kd:cz/ \/Qm(E MW /Q)d:c
72
1 — X0
2mE/
\/ 1 — —dw
Tl \/
2mE
=4/ 7;;2 xo/ V1 — cos2 0 sin 0d0

_2Em
n__.
T w2 2
forn=1,2,3,... this implies Ezhw(n—l—%) forn=0,1,2...

which coincides with the exact solution for the harmonic oscillator!
However, most of the time the WKB is not so exact....



WKB approximation

WKB approximation is valid when V(x) changes so slowly that the local
momentum is constant over a few wavelengths

Ax)
41

dk(x)
4z

< k(x)

WKB approximation breaks down near the classical turning points
because k(x) 2 0 and A =2 «© (connections formula required)

WKB is particularly useful for estimating tunneling rates and bound state
energies. Since bound states imply standing waves, we require that

/ " " \/2m(E — V(z))

dr = nmw + 60

bls)do = -

1 I
where I1, 2 are the classical turning points, 7t is an integer, and 30 is
an additional phase accounting for penetration of wave function into
barrier
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WKB approximation

In classically forbidden regions for which V(m) > F we have

W(z) ~ —A—exp(+ [ K(a)dx')

VE(z)

where n(x) = \/Zm(V(h:g) — E)

We can estimate the tunneling probability through a classically
forbidden region bounded by [z, 2] using

. (—2 /x - m(x)d:z:)

1

\IJ(ZEQ)
\IJ(xl)

r-|

In practice this equation is very helpful for estimating tunneling in real

physical systems, including semiconductor devices
ﬁiﬁi
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Comments and remarks regarding this course can be directly
addressed to Prof. F. Grillot at fgrillot@seas.ucla.edu
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